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Abstract. Fuzzing is a well-known black-box approach to the security
testing of applications. Fuzzing has many advantages in terms of simplic-
ity and effectiveness over more complex, expensive testing approaches.
Unfortunately, current fuzzing tools suffer from a number of limitations,
and, in particular, they provide little support for the fuzzing of stateful
protocols.

In this paper, we present SNOOZE, a tool for building flexible, security-
oriented, network protocol fuzzers. SNOOZE implements a stateful
fuzzing approach that can be used to effectively identify security flaws in
network protocol implementations. SNOOZE allows a tester to describe
the stateful operation of a protocol and the messages that need to be gen-
erated in each state. In addition, SNOOZE provides attack-specific fuzzing
primitives that allow a tester to focus on specific vulnerability classes. We
used an initial prototype of the SNOOZE tool to test programs that im-
plement the SIP protocol, with promising results. SNOOZE supported the
creation of sophisticated fuzzing scenarios that were able to expose real-
world bugs in the programs analyzed.
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1 Introduction

Security is a critical factor in today’s networked world. The complexity of many
network protocols combined with time-to-deliver constraints imposed on devel-
opers and improper or insecure coding practices make errors inevitable. As a
result, new vulnerabilities in network-based applications are found and adver-
tised on a daily basis. The impact of vulnerability exploitation can be severe,
and, in addition, the cost of correcting errors after a system has been deployed
can be very high. Therefore, we need effective methods and tools to identify bugs
in network-based applications before they are deployed on live networks.

One of the methodologies used to carry out this task is fuzzing [12l3]. Fuzzing
is a form of black-box testing whose basic idea is to provide a system with
unexpected, random, or faulty inputs, which expose corner cases not considered
during implementation.

Fuzzing has a number of advantages over other testing techniques, such as
manual code review, static analysis, and model checking. First, fuzzing can be
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applied to programs whose source code is not available. Second, fuzzing is largely
independent of the internal complexity of the examined system, overcoming prac-
tical limits that prevent other testing methods (e.g., static analysis) from being
able to operate on large applications. Being completely independent of the tested
program’s internals, the same fuzzing tool can be reused to test similar pro-
grams regardless of the language in which they are implemented. Finally, bugs
found with fuzzing are reachable through user input, and, as a consequence, are
exploitable.

A number of tools make use of fuzzing as a technique to test systems. They
generally present limitations that hinder their wider and more effective use. In
many cases, the means available to inject faults in the generated input are re-
strictive and do not include methods to specifically generate inputs that would
likely trigger well-known, target-specific attacks. Furthermore, support for test-
ing complex, stateful protocols is generally lacking; thus, requiring the tester to
manually bring the system to the desired state before starting the actual test.
Finally, the language adopted to describe how fuzzing should be performed is
often very primitive, and, as a consequence, the activity of specifying fuzzing
tests can require significant effort.

In this paper, we propose SNOOZE, a tool for building flexible, security-
oriented, network protocol fuzzers. In SNOOZE we try to integrate the strengths
of existing fuzzing tools, while correcting the limitations discussed above.

We have built a prototype of SNOOZE, and we used it to perform fuzzing of
network applications that implement the Session Initiation Protocol (SIP) [4].
We decided to focus on SIP-based applications for several reasons. First, SIP
is one of the core protocols of the VoIP infrastructure, which is becoming in-
creasingly popular. Second, there are many competing implementations of SIP,
some of which are not completely stable and have not undergone a full security
assessment. Finally, SIP is a fairly complex, stateful protocol with many nuances
and details that complicate its implementation and, therefore, its testing.

The contributions of this work are twofold:

1. We identify the requirements for a class of sophisticated fuzzers that can be
used to test complex protocols.

2. We present the design and discuss the prototype implementation of a fuzzing
approach that supports the testing of stateful protocols.

Our approach allows testers to build better fuzzers to evaluate more easily and
more thoroughly the security strengths and weaknesses of complex, stateful pro-
tocol implementations. As a result, our tool can be used to limit the number
and severity of vulnerabilities in deployed systems. We tested our tool on three
real-world implementations of the SIP protocol, and we were able to identify
previously unknown vulnerabilities.

The rest of the paper is organized as follows. In the next section we discuss the
fundamental characteristics of fuzzing. In Section Bl we review related work. In
Section [4] we present our approach and analyze the first prototype of SNOOZE.
The evaluation of our tool is presented in Section [Bl Section [6] concludes and
discusses future work.
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2 Background

Fuzzing is a black-box approach to testing the security properties of a software
component. Fuzzing operates on the input and output of a component without
requiring any knowledge of its internal working. The technique of fuzzing aims
to expose flaws in applications by exercising them with invalid inputs.

Fuzzing requires three basic operations: generating random or unexpected
input that could lead the application under test into an invalid state; injecting
this input into the application; and, finally, observing whether the input causes
the application to fail. Fuzzing relies on two fundamental assumptions:

1. A significant part of the faults contained in an application can be triggered
through a limited number of input sources controlled by the user.

2. The execution of a faulty portion of an application manifests itself in visible
ways, e.g., by producing unexpected output, crashing the application, or
making it unresponsive.

This approach is different from white-box techniques, such as static analysis
and model checking, where an explicit model of the tested application, or of
some of its properties, is built and validated for correctness.

Fuzzing, unlike many white-box approaches, is not complete in the sense that
it is not guaranteed to expose all faults in a program. On the other hand, all
flaws found through fuzzing are guaranteed to correspond to some bug in the
tested code, and, therefore, fuzzing can be considered as sound.

In general, there are two orthogonal strategies for creating faulty input for
an application: generation and mutation. The generation strategy uses a formal
specification of the input accepted by the tested system to generate a set of valid
input values. These values are then modified by applying fuzzing primitives to
obtain faulty test data. Mutation, on the other hand, relies on a set of valid
input values (e.g., extracted from normal sessions), which, as before, are modified
using fuzzing primitives. Generation requires that a formal specification of input
values be available, but it is capable of generating all valid input. The efficacy of
mutation, instead, is critically dependent on the completeness of the input set
that is used. However, the generated input is generally more tractable and can
focus on a specific area of weakness or type of flaw.

Fuzzers can also be differentiated on the basis of their level of understanding
of input semantics. More sophisticated fuzzers automatically take into account
rules constraining various parts of the input. For example, the value of some input
parts may be dependent on characteristics of the whole input (e.g., checksums
or content length fields), while other fields may be required to be encoded in
particular formats (e.g., encrypted). Less sophisticated fuzzers leave the burden
of taking care of these aspects to the user.

Fuzzers also differentiate themselves in the heuristics implemented to fuzz
input and in their flexibility of use. Heuristics can be based on data types (e.g.,
for integer types, they may test boundary conditions such as large or small
numbers, zero, and negative values) or on the expected vulnerability nature (e.g.,
SQL injection or format string). The complexity of applying fuzzing heuristics
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can range from the invocation of a function call to the modification of an input
grammar.

In some scenarios, faults in a system can only be reached after performing
several intermediate steps, bringing the system to a certain state. For example,
it might be necessary to perform a login step before gaining access to the appli-
cation functionality that needs to be tested. Stateful fuzzers have knowledge of
the system’s state machine and are able to perform actions that differ depending
on the current state. Stateless fuzzers, however, regard each input as completely
independent. This is a substantial limitation and the main motivation behind
the development of our stateful fuzzer.

3 Related Work

Fuzzing has been long used as a testing technique in areas not directly related
to security (e.g., for reliability and fault tolerance assessment). One of the first
uses of fuzzing is described by Miller et al. in [I]. In this paper the authors
tested several standard UNIX utilities by giving them random input. The same
methodology was used in later tests on the same applications [2] and on Win-
dows [3] and MacOS [5] applications. All these tests make use of very simple
fuzzing techniques, based on the generation of large chunks of random data, and
have limited support for the testing of network protocol implementations.

Similar approaches proved useful when testing large, heterogeneous and com-
plex systems, such as hardware components, real-time systems, and distributed
applications. Loki, ORCHESTRA, and NFTAPE are significant examples of
fault injectorsﬂ specifically designed for their environments. Loki allows one to
inject faults in a distributed system on the basis of a partial view of the global
state [6]. ORCHESTRA is a fault injection framework for distributed systems in
which faults are specified as Tcl scripts, which are injected in a layered protocol
stack [7]. NFTAPE adds support for multiple fault models and fault injection
methods [§]. These approaches are very interesting but their focus is not on
security.

More recently, fuzzing has been applied to the testing of web services. For
example, one effort describes a fuzzer for web form-based services [9], while an-
other presents dependability tests of SOAP components [10]. WSDigger is an
open source tool for black-box testing of web services that takes the WSDL
file of a web service as an input and tests the service with a specially crafted
payload [11]. While the general ideas proposed in these works are probably ap-
plicable to different domains, they propose tools that are restricted to the testing
of web services.

There are a number of tools that specifically target network protocols. The
most representative of this class of fuzzers are SPIKE [12] and PROTOS [13].
The former, developed by Dave Aitel, is a framework which provides an API
and set of tools to aid in the creation of network protocol fuzzers in C. In

! Fuzzing is usually considered to be a variant of the fault injection approach which
uses randomized input.
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SPIKE, a protocol packet is divided into a set of blocks, each of which can be
fuzzed independently and automatically. Any change in a block size caused by a
fuzzing transformation is handled automatically by SPIKE. However, the block
abstraction provided by SPIKE is fairly low-level and does not allow one to
easily model stateful protocols and complex messages, and their dependencies.
In addition, because SPIKE-based fuzzers have to be implemented in C, their
development can be effort-intensive and more complex than when using higher-
level languages.

PROTOS, which was developed by the Oulu University Secure Programming
Group, unlike SPIKE, does not provide an API for building custom fuzzers.
Instead, it provides reusable test suites consisting of carefully crafted protocol-
specific messages. Unlike other fuzzers that just send random input to a target
system, PROTOS strives to generate input more intelligently by starting from
the formal specification of a protocol and then using fuzzing values to generate
faulty inputs. These inputs are based on heuristics that focus on triggering spe-
cific vulnerabilities, such as format string vulnerabilities and buffer overflows.
The PROTOS approach has proven to be very effective: in 2002 it led to the dis-
covery of many vulnerabilities in implementations of the Simple Network Man-
agement Protocol [14]. However, PROTOS does not provide fuzzing primitives
or the ability to modify test cases without changing the protocol grammar itself,
which can be a non-trivial task. Finally, it is difficult to completely evaluate
because the engine used to generate test cases is not publicly available.

The goal of our project is to create a fuzzing tool that incorporates the best
features of the existing fuzzers and, in addition, supports the creation of stateful
protocol fuzzers. In the next section, we present the architecture of our fuzzing
tool, which we call SNOOZE.

4 Architecture

SNOOZE is an extensible tool for the development of stateful network protocol
fuzzers. It consists of the Fault Injector, the Traffic Generator, the Protocol
Specification Parser, the Interpreter, the State Machine Engine, and the Monitor.
Figure [I shows the high-level architecture of SNOOZE.

The Interpreter is responsible for running the fuzzing tests. It takes as input a
set of protocol specifications, a set of user-defined fuzzing scenarios, and a module
implementing scenario primitives. A protocol specification defines the general
characteristics of a protocol. These characteristics include, but are not limited
to, the protocol type (e.g., whether it is binary or character based), the general
format of header fields, the syntax of messages that can be exchanged in the
protocol, and the allowed message flows (i.e., a state machine). The specification
language is XML-based.

While SNOOZE has a number of protocol specifications included, new spec-
ifications can easily be added as needed. In addition, these specifications need
only be written once, and they then can be reused to write testing scenarios.
The Parser parses a protocol specification and makes it available to other parts
of the tool.
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Fig. 1. Main components of SNOOZE

An example of a protocol specification is presented in Figure 2], which defines
the syntax of the SIP INVITE message. In a protocol specification, each mes-
sage is defined by a <msg-rule> element. Each <msg-rule> element consists of
<build-rule> elements, which reference <rule> elements. The <rule> element
either contains references to other building rules or specifies a default value for
the corresponding message field. More specifically, in the example in Figure 2]
the element <build-rule id="SIP-Version"/>specifies that each SIP INVITE
message is required to contain a SIP-Version field, the syntax of which is de-
fined by the <rule> element with ID SIP-Version. The default value for the
SIP-Version field in this case is the string SIP/2.0 concatenated with a value
generated by the CRLF rule.

The default values assigned to fields are subject to change through the use
of the mutation primitives described later. This makes it possible to modify the
values of fields and to insert additional and user-defined fields into the message
generated from the specification.

The dynamic aspects of a protocol, i.e., the valid sequences of exchanged
messages, are specified with a state transition diagram. Each state represents
a different step in the evolution of a conversation between two end-points: one
state, for example, could record the fact that an INVITE message has been sent
but the corresponding acknowledgment has not been received yet. The rules of



SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr 349

a protocol dictate the allowable transitions from one state to the other. For
example, a rule would describe that when a CANCEL message is received the
system should transition back to the initial state. Transitions are guarded by a
condition that specifies which events can trigger the transition. Events can be
the reception or the transmission of a message with specific values in determined

message fields. Figure Bl shows a fragment of the specification of the SIP state
diagram for a client user-agent.

<protocol type="ascii'">
<msg-rule id="INVITE">
<build-rule id="INVITEm"/>

<build-rule
<build-rule
<build-rule
<build-rule
<build-rule
<build-rule
<build-rule
<build-rule
<build-rule
<build-rule

id="Request-URI"/>

id="SIP-Version"/>

id="via"/>

id="Max-Forwards"/>

id="From"/>

id="To"/>

id="Call-ID"/>

id="CSeq"/>

id="Contact"/>

option="optional" max="inf" id="message-header"/>

<build-rule

<build-rule

<build-rule
</msg-rule>

id="Content-Length"/>
id="CRLF"/>
option="optional" max="1" id="message-body"/>

<rule id="SIP-Version">
<field type="string">SIP/2.0</field>
<build-rule id="CRLF"/>

</rule>

</protocol>

Fig. 2. Part of the specification of the SIP INVITE message

In the current implementation of our tool, protocol specifications are manually
extracted from standards, such as Request for Comments (RFC) documents, and
can describe a protocol’s features with the level of detail desired by the user. In
addition, the specifications can be used by the user to define default values to
be used for the various protocol fields.

Scenario primitives are the basic operations that are available for a user to
test a system; that is, they are the building blocks to derive test “drivers”.
Currently, scenario primitives include mechanisms to build messages according
to a protocol description, to send and wait for messages, to fuzz specific fields
in a message, and to explore and leverage the state information available for a
stateful protocol. Some of the available primitives are shown in Table [Tl

The Fault Injector component allows a user to manipulate “normal” messages
of a protocol in ways that, ideally, will cause faults in the target implementation.
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<graph xmlns="http://www.martin-loetzsch.de/DOTML" id="SIP">
<!-- states -—>
<node id="Start" root="true"/>
<node id="Invite.Calling"/>
<node id="Invite.Proceeding"/>
<node id="Invite.Completed"/>
<node id="Invite.CompletedAck"/>
<node id="Terminated"/>

<!-- transitions -->

<edge from="Start" to="Invite.Calling">
<send-message protocol="SIP" type="INVITE"/>

</edge>

<edge from="Invite.Calling" to="Invite.Proceeding">
<recv-message protocol="SIP" type="RESPONSE">

<field name="code" value="177"/>

</recv-message>

</edge>

</graph>

Fig. 3. Part of the specification of the SIP state diagram

The current prototype includes a set of functions that can be used to fuzz string
and integer fields in a scenario. The fuzzing functions implement various heuris-
tics based on the testing of boundary conditions, such as very long strings, large
numbers, or exploit inputs for common vulnerabilities such as SQL or command
injection.

A fuzzing scenario encodes the fuzzing activity to be performed. A scenario
uses the protocol specifications, scenario primitives, and the fuzzing module de-
scribed above to build messages appropriate for a target protocol by fuzzing
some of their fields and sending them to the target system. In the current im-
plementation of our tool, a fuzzing scenario is a Python script that makes use
of SNOOZE components and is run by the standard Python interpreter.

Figuredshows a complete, albeit simple, fuzzing scenario. In this scenario, we
specify that we want to use SIP over UDP. We then build a SIP INVITE message
with default values for every required field. After the INVITE message is built
automatically by the SNOOZE engine, we set the Request-URI and To fields to
some fixed value and specify that we want the From field to be fuzzed with values
that are likely to expose an SQL injection vulnerability. The message is sent ten
times using a loop. For each iteration of the loop, any piece of the SnoozeMessage
that should be fuzzed, in this case, part of the From field, will contain a new
fuzzed value that is automatically generated by the Fault Injector. Recall that
the Fault Injector is responsible for performing fuzzing transformations on the
data stored in a generic type (e.g., SnoozeString) as specified in that generic
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Table 1. The SNOOZE primitives

Name Description

snoozeUse Parses the specification of the provided protocol

snoozeOpen Opens a session with the given host and performs any required
initialization

snoozeClose Closes the given session and performs cleanup

SnoozeMessage A class modeling protocol-independent messages

setField Method of SnoozeMessage that allows one to set a field in a
message to a given value

snoozeSend Sends a message

snoozeExpect Waits for a message

SnoozeString Generic string type used in SnoozeMessage

Snoozelnt8 Generic eight bit integer type used in SnoozeMessage

Snoozelnt16 Generic sixteen bit integer type used in SnoozeMessage

Snoozelnt32 Generic thirty-two bit integer type used in SnoozeMessage

Snoozelnt64 Generic sixty-four bit integer type used in SnoozeMessage

fuzz_string_repeat
fuzz_string_binary
fuzz_string_x86nop
fuzz_string_sql_inj

fuzz_string_sh_inj

fuzz_terminator
fuzz_intX_usig

fuzz_intX _sig

Fuzzes a field repeating a given pattern multiple times

Fuzzes a field inserting binary content

Fuzzes a field inserting x86 NOP instructions

Fuzzes a field inserting strings likely to expose an SQL injection
vulnerability

Fuzzes a field inserting strings likely to expose a shell command
injection vulnerability

Fuzzes a field inserting a field terminator string

Fuzzes a field inserting unsigned integer values. There exist ver-
sions for 8, 16, 32 and 64 bits integers

Fuzzes a field inserting signed integer values. There exist versions
for 8, 16, 32 and 64 bits integers

getValidSendMsgs
getInvalidSendMsgs
getValidReceiveMsgs
getInvalidReceiveMsgs

getCurrentState

Returns the set of messages that may be validly sent in the cur-
rent state of the protocol

Returns the set of messages that cannot be validly sent in the
current state of the protocol

Returns the set of messages that may be validly received in the
current state of the protocol

Returns the set of messages that cannot be validly received in
the current state of the protocol

Returns an object holding information about the current state
of the protocol

type’s constructor. At the end of the scenario, the session is closed. Figure
shows a selection of the messages generated by this scenario.
Figure [0l shows the use of some of the state-related primitives. As before,

from the initial state,

an INVITE message is sent. Since this represents a valid

transition, the State Machine Engine updates the current state. The scenario,
then, sends all messages that are not supposed to be sent from the current state
and waits for a message. The scenario at this point could, for example, check the
received packet to determine whether the invalid messages caused an unexpected
transition in the implementation under test.
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from snooze_scenario_primitives import *
from snooze_types import *

# fuzz SIP over UDP (the network profile)
profile = snoozeUse(’SIP’, ’udp’)

host
port

’127.0.0.1°
5060

sd = snoozelOpen(host, port, profile)

# build an INVITE message
m = SnoozeMessage(’SIP’, ’INVITE’)
# modify default values of some fields
m.setField(’Request-URI’, [
SnoozeString(’ru’, ’sip:test@’ + host + ’:’ + str(port) + > ’)])
m.setField(’To’, [SnoozeString(’tn’, ’To: ’),
SnoozeString(’tv’, ’sip:test@’ + host), SnoozeString(’fe’, ’\r\n’)])

m.setField(’From’, [SnoozeString(’fn’, ’From: ’),
SnoozeString(’fr’, ’sip:’),
SnoozeString(’ff’, ’A’, fuzz_string_sql_inj),

SnoozeString(’fv’, ’@’ + host), SnoozeString(’fe’, ’\r\n’)])

for i in range(10):
snoozeSend(sd, m)
snoozeClose(sd)

Fig. 4. An example fuzzing scenario

The SnoozeExpect primitive provides a mechanism to wait for messages,
based on what type of protocol is being fuzzed (e.g., text or binary), the type of
message, and the message’s content. A scenario developer can then make condi-
tional decisions based on the return value of the primitive, thereby navigating
paths in the protocol state machine dynamically.

The operation of sending messages to the target system is performed by the
Traffic Generator component. It receives messages created by a user scenario and
transforms them into network packets while taking into account fields that need
to be updated (e.g., checksums or content length fields). Then, it sends those
packets to the target system.

The State Machine Engine keeps information about the state of network op-
erations. In practice, it keeps track of transmitted and received messages, and
it uses the protocol state diagram specification to check whether the messages
trigger some transition from the current state to a new state.

Finally, the Monitor component analyzes the traffic data and the behavior
of the target system, looking for manifestations of a fault. These manifesta-
tions include, but are not limited to, events such as a segmentation fault in
the target system, a hang, an abnormal behavior, or an unexpected output
that is the result of the system being put into an inconsistent state. In the
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INVITE sip:test@127.0.0.1:5060 SIP/2.0

Via: SIP/2.0/TCP foo.cs.ucsb.edu:4040;branch=z9hG4bK74bf9
Max-Forwards: 70

From: sip:(SELECT%20%)@127.0.0.1

To: sip:test@127.0.0.1

Call-ID: UniQuel@tester.com

CSeq: 1 INVITE

Contact: <sip:whatever.com>

Content-Length: 0

INVITE sip:test@127.0.0.1:5060 SIP/2.0

Via: SIP/2.0/TCP foo.cs.ucsb.edu:4040;branch=z9hG4bK74bf9
Max-Forwards: 70

From: sip:%200R%201=10127.0.0.1

To: sip:test@127.0.0.1

Call-ID: UniQuel@tester.com

CSeq: 1 INVITE

Contact: <sip:whatever.com>

Content-Length: 0

Fig.5. An example of the messages sent when executing the scenario in Figure [

current SNOOZE prototype, rudimentary monitoring is available. This is pro-
vided through the snoozeExpect primitive, which will alert the tester when
either an unexpected message is received or a timeout expires without receiving
any data, which usually indicates the target system has crashed or hung because
of the last snoozeSend. In addition to this automated monitoring, manual in-
spection must be done on the target system to identify whether the system is
“behaving” correctly when a fault does not manifest itself in the messages being
exchanged between the fuzzer and the target system.

5 Evaluation

Evaluating a fuzzer’s performance is difficult. Generally, there is no direct feed-
back about the effectiveness of the fuzzer, other than the fact that the target
system crashed or stopped functioning correctly. For this reason, the common
evaluation practice is to run the fuzzer on a test suite of programs and evaluate
its effectiveness based on the number of bugs found or the number of programs
crashed. However, as discussed in previous sections, no conclusion can be de-
rived about the completeness of the analysis performed through black-box test-
ing. Therefore, an interesting extension to this basic practice would be to couple
the number of bugs found with the amount of code exercised as a quantitative
evaluation metric. We plan to investigate this extension in future tests as we
believe that code coverage provides an estimate of how thorough the fuzzing
process is. The assumption is that the more code paths that are traversed, the
more potential bugs are discovered.
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from snooze_scenario_primitives import *
from snooze_types import *

# fuzz SIP over UDP (the network profile). Enable the State Machine Engine
profile = snoozeUse(’SIP’, ’udp’, ’client’, True)

target_port = 5062

snooze_port = 5060

# open the session
sd = snoozeOpen(’128.111.48.24°, target_port, profile, snooze_port)

# build and send an INVITE message

m_inv = SnoozeMessage(’SIP’, ’INVITE’, {’Content-Type’: ’Content-Type’})
...[packet setup not shown]...

snoozeSend(sd, m_inv)

# send invalid messages
for msg in getInvalidSendMsgs():
snoozeSend(sd, msg)

# wait for reply
snoozeExpect (sd)

Fig. 6. A scenario that uses state-related primitives

Qualitative metrics are also valuable. The ease of creating powerful fuzzing
scenarios is a key factor in the adoption of one tool over another. In addition
to providing fuzzing functionality, the ability to build simple, general-purpose
clients is another metric to consider when comparing fuzzers.

Having decided on the appropriate metrics for evaluating our tool, we chose
to focus our attention on the Session Initiation Protocol (SIP) [4]. SIP is an
application-layer signaling protocol used to create, modify and terminate ses-
sions with one or more participants, such as those found in Internet conferences
and Internet telephone calls. Managing sessions involves multi-step operations.
Consider for example the steps involved in the setup of a call: the caller sends an
INVITE message to the callee; the user agent of the callee sends back a Ringing
status response; when the user answers the call, an 0K message is generated; the
caller replies to this message with an ACK message. A similar exchange of mes-
sages is required for call termination. A consequence of the statefulness of SIP
is that many bugs can be exposed only by exploring states that are “deep” in
the protocol state machine, i.e., states that are reachable only after exchanging
a coherent series of messages with the application under test.

We chose SIP for our evaluation for several reasons. First, there are several
open-source implementations available. This allowed us to assemble a set of
applications to test and to investigate the problems we found by code inspec-
tion. Second, SIP is not yet fully mature. Several implementations are still not
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completely RFC-compliant and most projects have been started within the last
couple of years. Finally, SIP is currently being used as the signaling protocol for
many popular IP telephony, chat, and video conferencing applications.

We built a testbed of different SIP implementations consisting of the following
programs: Linphone 1.1.0 [I5] compiled with libosip 2.2.2 [16], Kphone 4.2 [17],
and SJphone 2.99a [I§]. These programs are a representative set of commonly
used programs that utilize SIP.

Our tests consisted of running a scenario that fuzzed different combinations
of fields, using all of the fuzzing primitives that are currently implemented in
SNOOZE. The scenario explores different states of the programs under test,
by sending the sequence of messages INVITE, CANCEL, ACK. Note that, in this
way, we set up a complete SIP dialog, comprising several transitions in the SIP
state machine, and we can perform fuzzing at all of the traversed states. We let
this scenario replay this message sequence 19,000 times using different fuzzing
values. This fuzzing scenario did not cause any fatal error, e.g., crash or hang,
in SJphone or Kphone. However, it found several problems in Linphone and
hereafter we describe three bugs that are representative of the types of flaws
that SNOOZE can expose.

The first example is a crash caused by the initial INVITE message in our
test sequence. Linphone shows the identity of a caller by presenting the content
of the From field of a SIP INVITE message. When receiving fuzzed messages,
the message parsing routine in Linphone is unable to parse the From field and
returns a NULL value to its caller instead of a valid pointer to the parsed content.
Unfortunately, the caller routine does not check the returned value and blindly
dereferences it, causing a segfault and a subsequent crash of the program. Even
though this error cannot generally be used to further escalate privileges, it can
be considered a denial of service attack. The bug has been acknowledged by the
author of the program and corrected in the following release [19].

A second crash resulted from a malformed ACK message, the last in the se-
quence that we were playing. The message, on its own, had no effect, and the
bug only manifested itself in the case where there was an open call. That is,
there was state saved in the form of a dialog. This bug, similar to the previ-
ous one, results from an attempted NULL pointer dereference in 1ibosip. In this
particular iteration of the scenario, an INVITE message had been sent which
caused Linphone to enter the ringing state. The subsequent CANCEL message
for that call was then ignored by Linphone because it was being fuzzed with bi-
nary data, making it non-parsable. A new call was then attempted with another
INVITE message, causing Linphone to save the current state. Several message
sequences later, an ACK message was sent with no Call-ID field present. Lin-
phone received the parsed message from libosip, recognized that it was an ACK,
and iterated through the dialogs associated with each phone call, calling the
libosip routine osip_dialog match_as_uas. The first step of this routine is to
convert the Call-ID field of the received message to a string and then com-
pare it to the same field in the stored dialog. In this case, the internal routine
to convert the Call-ID field to a string returns -1, indicating an error, which
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osip_dialogmatch_as uas fails to check. The resulting NULL pointer is then
passed to strcmp which causes the segmentation fault to occur. This bug would
not have been found without the ability to drive the application to a state deep
in the SIP state machine.

A third crash was related specifically to the application’s graphical interface.
Although the details are not clear at this point, an improper series of messages
cause debug statements of the form “Xlib: unexpected async reply” to be printed
to the console. This problem is most likely caused by threading issues affecting
the use of Xlib. The exact problem, however, is still to be determined.

From a qualitative point of view, SNOOZE, even in its first prototype version,
has some advantages over other fuzzers. First, SNOOZE follows an object-oriented
approach to the creation and manipulation of protocol messages by allowing the
user to abstract away irrelevant details. This feature, coupled with the use of proto-
col specifications, greatly eases the task of dealing with messages. The result is that
users can build valid protocol messages by simply invoking the SnoozeMessage
constructor and message fields can later be manipulated by calling methods of the
SnoozeMessage class. This contrasts with other fuzzers that require users to man-
ually construct each message (e.g., SPIKE), and with those that allow users to
modify messages only by manipulating the protocol grammar (e.g., PROTOS).
Second, it provides a set of fuzzing methods that can be easily reused in multi-
ple scenarios. Third, by design, it should be easy to use SNOOZE as the basis for
general-purpose network clients, implemented using calls to SNOOZE primitives
like SnoozeMessage, snoozeSend and snoozeExpect. This is not possible with
fuzzing tools that only build test cases.

6 Conclusions

The complexity of current network protocols and the increasing number of at-
tacks against protocol implementations require a stronger emphasis on the test-
ing of programs. Not only more powerful but also more intuitive tools for assess-
ing the security of network programs are needed.

We believe that fuzzing, i.e., injecting faults into a program by exercising it
with random and unexpected input, can be a powerful testing tool. Even though
fuzzing does not guarantee completeness of the analysis, it provides a practical
way to quickly assess the robustness of an implementation to malicious input.

We described the initial design and implementation of SNOOZE, a tool for
building flexible, security-oriented, multi-protocol network fuzzers. The first pro-
totype of SNOOZE provides a set of primitives to flexibly generate fuzzed
messages. [t also provides support for stateful protocols, allowing for rapid devel-
opment of fuzzing scenarios. The tool is protocol-independent and can be easily
extended.

The preliminary results from using SNOOZE on a testbed of programs imple-
menting the SIP protocol show that SNOOZE can be effectively used for finding
bugs that are hidden deep in the implementation of stateful protocols. Moreover,
the combination of reusable fuzzing primitives together with initial support for
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stateful protocols allowed for implementation of quite complex stateful scenarios
with reduced user effort.

In the future, we plan to extend SNOOZE in a number of directions. First, we
plan to enhance the support for stateful protocols, particularly exploring ways
to synchronize the state of the communication as seen by the fuzzer with the
state of the application under test. Also, we plan to develop a GUI that will
allow a scenario developer to build stateful scenarios graphically, in an intuitive
manner. In addition, we intend to further evaluate SNOOZE using the code
coverage metric. Finally, we will test the idea of composing SNOOZE with model
checking tools to better model the exploration of the protocol state machine.
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