
Defending Network-Based Services Against
Denial of Service Attacks

Jinu Kurian
Dept. of Computer Science
University of Texas at Dallas

Email: jinuk@student.utdallas.edu

Kamil Sarac
Dept. of Computer Science

University of Texas at Dallas
Email: ksarac@utdallas.edu

Kevin Almeroth
Dept. of Computer Science

University of California, Santa Barbara
Email: almeroth@cs.ucsb.edu

Abstract- Over the last decade, several value-added services
have been proposed for deployment in the Internet. IP multicast
is an example of such a service. IP multicast is a stateful service in
that it requires routers to maintain state for forwarding multicast
data toward receivers. This characteristic makes the service and
its users vulnerable to denial-of-service (DoS) attacks. One type
of attack aims to saturate the available buffer space for storing
state information at the routers. A successful attack can prevent
end systems from properly joining multicast groups. In this paper,
we present a solution to state overload attacks; evaluate the
overhead of the solution through a combination of simulation and
implementation; and outline an incremental deployment strategy
for its partial deployment. The evaluation results indicate that our
solution improves the resistance of IP multicast to state overload
attacks.

I. INTRODUCTION

Over the last decade, several value-added services have
been proposed for deployment in the Internet. These include
multicast communication [1], quality-of-service support [2],
content distribution networks [3], and denial-of-service (DoS)
defense mechanisms [4]. These services provide users with
an array of added capabilities. They also provide ISPs with an
opportunity to provide a new set of services to draw additional
revenue. Compared to the stateless nature of the traditional
best effort IP packet forwarding service, some of the above
mentioned value-added services introduce additional overhead
into the network. When misused, this overhead can be a means
to launch DoS attacks on the service or its users. In this paper,
we take IP multicast as an example and demonstrate how it can
be misused to create DoS attacks on the service and its users.
We then propose a solution to defend the IP multicast service
from these attacks. One high level lesson that we take from
this study is the realization of the difficulties in introducing
value-added network services without creating a significant
level of additional overhead and security vulnerability for the
network and its users.

IP multicast is one of the first value-added services to be
developed and partially deployed in the Internet [1]. Despite
the well known advantages of IP multicast in supporting multi-
receiver network applications, the existing multicast protocols
suffer from various security flaws that have restricted the use of
IP multicast on a larger scale [5], [6]. One important security
threat in IP multicast is the possibility of DoS attacks against
multicast-enabled routers. DoS attacks are possible because of
the additional overhead required for packet forwarding.

The current protocol to build and maintain multicast trees is
Protocol Independent Multicast (PIM) [7]. In PIM, in response
to join requests coming from multicast receivers, routers create
and maintain state entries in exhaustible forwarding state
buffers. This mechanism makes routers vulnerable to DoS
attacks called state overload attacks [6].

State overload attacks can be classified by the intended
victim of the attack, either end system or the infrastructure
itself. In a directed end system attack, the objective is to
thwart an end system or its subnet from sourcing or receiving
multicast content. By overloading the state buffers at routers
in its vicinity, a DoS attack can be executed against a multicast
source (e.g. an Internet TV station) preventing new customers
from joining and receiving data. In an infrastructure attack, the
attack target may be a group of the core routers in the network
backbone. If successful, the infrastructure attack may have an
impact on a large number of multicast users competing for the
limited state buffers at the attack point. Both types of attacks
are relatively easy to launch and can significantly impact the
availability of multicast for end users.
One basic idea to defend against state overload attacks is

to rate limit the number of join requests originating from
end hosts or multicast enabled subnets [6] [8]. Rate limiting
can be effective against state overload attacks that involve
one or more attack hosts within the same subnet. However,
rate limiting without knowledge about which join requests are
valid can have an adverse effect on legitimate join requests.
Furthermore, it may not be effective if the attack is sufficiently
distributed. Defending against state overload attacks has been
partially addressed in a few previously proposed solutions.
MAFIA uses distributed group membership information to
realize multicast access control and traffic filtering [9]. The
Multicast Control Protocol (MCOP) aims to control user
access to multicast services in the intra-domain [10]. Both
approaches attempt to control the multicast usage (i.e., sourc-
ing or receiving multicast content) of local end users.

In this paper, we propose a proactive solution to defend
against state overload attacks. The objective of our solution
is to protect multicast-enabled routers from being overloaded
with unwanted state information. We introduce certain en-
hancements to the PIM join procedure to enable routers to
verify the validity of a join message before creating state.
We evaluate the added overhead and the effectiveness of our

1-4244-0572-6/06/$20.00 02006 IEEE 17

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28, 2009 at 17:14 from IEEE Xplore. Restrictions apply.

Defending Network-Based Services Against
Denial of Service Attacks

Jinn Kurian Kamil Sarae Kevin Almeroth
Dept. of Computer Science

University of Texas at Dallas
Email: jinuk@student.utdallas.edu

Dept. of Computer Science
University of Texas at Dallas
Email: ksarac@utdallas.edu

Dept. of Computer Science
University of California, Santa Barbara

Email: almeroth@cs.ucsb.edu

Ahstract- Over the last decade, several value-added services
have been proposed for deployment in the Internet. IP multicast
is an example of such a service. IP multicast is a stateful service in
that it requires routers to maintain state for forwarding multicast
data toward receivers. This characteristic makes the service and
its users vulnerable to denial-of-service (DoS) attacks. One type
of attack aims to saturate the available buffer space for storing
state information at the routers. A successful attack can prevent
end systems from properly joining multicast groups. In this paper,
we present a solution to state overload attacks; evaluate the
overhead of the solution through a combination of simulation and
implementation; and outline an incremental deployment strategy
for its partial deployment. The evaluation results indicate that our
solution improves the resistance of IP multicast to state overload
attacks.

I. INTRODUCTION

Over the last decade, several value-added services have
been proposed for deployment in the Internet. These include
multicast communication [1], quality-of-service support [2],
content distribution networks [3], and denial-of-service (DoS)
defense mechanisms [4]. These services provide users with
an array of added capabilities. They also provide ISPs with an
opportunity to provide a new set of services to draw additional
revenue. Compared to the stateless nature of the traditional
best effort IP packet forwarding service, some of the above
mentioned value-added services introduce additional overhead
into the network. When misused, this overhead can be a means
to launch DoS attacks on the service or its users. In this paper,
we take IP multicast as an example and demonstrate how it can
be misused to create DoS attacks on the service and its users.
We then propose a solution to defend the IP multicast service
from these attacks. One high level lesson that we take from
this study is the realization of the difficulties in introducing
value-added network services without creating a significant
level of additional overhead and security vulnerability for the
network and its users.

IP multicast is one of the first value-added services to be
developed and partially deployed in the Internet [1]. Despite
the well known advantages of IP multicast in supporting multi­
receiver network applications, the existing multicast protocols
suffer from various security flaws that have restricted the use of
IP multicast on a larger scale [5], [6]. One important security
threat in IP multicast is the possibility of DoS attacks against
multicast-enabled routers. DoS attacks are possible because of
the additional overhead required for packet forwarding.

1-4244-0572-6/06/$20.00 ©2006 IEEE 17

The current protocol to build and maintain multicast trees is
Protocol Independent Multicast (PIM) [7]. In PIM, in response
to join requests coming from multicast receivers, routers create
and maintain state entries in exhaustible forwarding state
buffers. This mechanism makes routers vulnerable to DoS
attacks called state overload attacks [6].

State overload attacks can be classified by the intended
victim of the attack, either end system or the infrastructure
itself. In a directed end system attack, the objective is to
thwart an end system or its subnet from sourcing or receiving
multicast content. By overloading the state buffers at routers
in its vicinity, a DoS attack can be executed against a multicast
source (e.g. an Internet TV station) preventing new customers
from joining and receiving data. In an infrastructure attack, the
attack target may be a group of the core routers in the network
backbone. If successful, the infrastructure attack may have an
impact on a large number of multicast users competing for the
limited state buffers at the attack point. Both types of attacks
are relatively easy to launch and can significantly impact the
availability of multicast for end users.

One basic idea to defend against state overload attacks is
to rate limit the number of join requests originating from
end hosts or multicast enabled subnets [6] [8]. Rate limiting
can be effective against state overload attacks that involve
one or more attack hosts within the same subnet. However,
rate limiting without knowledge about which join requests are
valid can have an adverse effect on legitimate join requests.
Furthermore, it may not be effective if the attack is sufficiently
distributed. Defending against state overload attacks has been
partially addressed in a few previously proposed solutions.
MAFIA uses distributed group membership information to
realize multicast access control and traffic filtering [9]. The
Multicast Control Protocol (MCOP) aims to control user
access to multicast services in the intra-domain [10]. Both
approaches attempt to control the multicast usage (i.e., sourc­
ing or receiving multicast content) of local end users.

In this paper, we propose a proactive solution to defend
against state overload attacks. The objective of our solution
is to protect multicast-enabled routers from being overloaded
with unwanted state information. We introduce certain en­
hancements to the PIM join procedure to enable routers to
verify the validity of a join message before creating state.
We evaluate the added overhead and the effectiveness of our

approach using a combination of simulation and implementa-
tion. Based on our evaluations we observe that our solution
is highly effective in preventing state overload attacks while
introducing only minimal overhead in the network.
The rest of this paper is organized as follows. Section II

summarizes how the PIM-Join mechanism works and why
it is vulnerable to attack. Section III describes our modified
protocol including its operation, its evaluation, and partial
deployment strategies. Finally, Section IV concludes the paper.

II. PROBLEM DESCRIPTION
In this section, we briefly examine how PIM joins work and

why the existing procedure is vulnerable to DoS attacks.

A. PIM Join Mechanism
PIM supports two types of join operations: (1) shared tree

joins, and (2) source specific joins. Shared tree joins are used
to establish a shared tree between the receivers and a pre-
selected special router, called the Rendezvous Point (RP).
Since the RP is a domain-local router, the join message and the
state created are also local. Hence, state overload attacks using
shared tree joins can have only a limited, localized effect. In
source specific joins, the receivers join directly to the multicast
source, S, of a group, (S,G). Since S can be located anywhere
in the Internet, attacks via source specific joins are extremely
potent, impacting potentially any local or remote victim sites.
Therefore we focus on source specific join attacks in this
paper.

In PIM, the designated router of a receiver, DR(R), creates a
new Join(S,G) message and forwards it towards the designated
router of the source, DR(S). All the routers between DR(R)
and DR(S) create forwarding state for the (S,G) group as
the join message propagates towards S. Routers forward join
messages on their shortest path interface towards the source.
This interface is called the incoming interface (iif) or reverse
path forwarding interface (IntRpF) for the group. For each iif
entry, the router also includes all the interfaces from which it
received PIM-Join messages in an outgoing interface list (oif)
for the group. A router needs to create new forwarding state
for a PIM-Join for each distinct (S,G) group. In source specific
multicast, a single source can support up to 224 multicast
groups, all of which can be used to generate distinct Join(S,Gi)
messages.

The forwarding state created is "soft", i.e. it expires if no
refresh message arrives from downstream. Each state entry is
associated with an entry-timer (ET) and each interface in the
oif for the entry is associated with an oif-timer (OT). When
the router receives a PIM-Prune message on an interface, i, in
oif, it removes i from oif. Alternatively, if no refresh message
arrives on i during a Join Hold Time period (the default is
260 seconds), OTi expires and i is removed from oif. Finally,
when oif becomes empty and the ET expires, the router sends
a Prune(S,G) message on its iif interface for the group and
leaves the multicast tree.

B. State Overload Attacks
A vulnerability in the existing PIM-Join procedure that is

exploited in a state overload attack is that DR(R) issues a

PIM-Join message without verifying whether the source or
the group exist. The Join(S,G) message (legitimate or bogus)
propagates towards S creating forwarding state at all routers on
the R-to-S path. Since the routers do not have any mechanism
to verify the validity/existence of the source or the group, they
will maintain the (S,G) state as long as R, who could be an
attacker, sends a refresh message.

Consider an attack scenario that proceeds in rounds. For
the first round of 260 seconds (or the local default Join Hold
Time), the attacker generates distinct bogus join messages to
create unwanted state information in the routers. In subsequent
rounds, it sends refresh messages to continue to maintain
the state at the routers. If there are multiple attackers, the
amount of state information maintained at routers could be
prohibitively large. For example, in a directed end system
attack, if there are 5,000 zombies (attackers), with each zombie
issuing 10 separate join requests per minute, at the end of the
first round, the routers at the target site will need to store
more than 200,000 different multicast entries. Similarly, an
infrastructure attack can be launched with attackers choosing
highly used paths to target routers at the core of the network.
In this case, the attacks are less targeted and the state created
would potentially be distributed among multiple core routers.
Considering the same attack parameters as before, in the worst
case, a core router may end up storing up to 200,000 different
entries. In both attacks, the number of entries that can be
created is prohibitively large. The above discussion suggests
that a solution to the problem must involve a verification of
the validity of the source and the groups being subscribed
to in a join message. We expect that the routers are suitably
provisioned to handle the legitimate join requests so that joins
to legitimate groups will not create an attack. In the rest of this
paper, we present an approach to include such a verification
mechanism in the multicast join process.

III. MODIFIED MULTICAST JOIN PROCEDURE

A. Modified PIM Joins
The objective of the modified join procedure is to ensure

that before creating any state, every router in the forwarding
path can individually verify the validity of the source and the
group being subscribed to in the join. This verification ensures
that bogus join messages sent by malicious receivers cannot
create unwanted state in the routers.

During join forwarding, routers do not create any forward-
ing state, but instead add the requisite state information to the
join message before sending it upstream towards the source.
Each on-tree router, Rj, appends this state information as
a nonce, say Nj, to the end of a nonce block in a new
Join(S,G,N) message. The state information added includes
the incoming interface, ij, of the join message and a secure
hash of all the locally added state, Hj (a detailed description
of the state added is deferred to Section III-B).

If the source and the group in the Join(S,G,N) message are
valid, the accumulated state information is returned by DR(S)
in a new JoinACK(S,G,N) message. Each router, Rj, in the re-
turn path individually verifies the JoinACK(S,G,N) by recom-
puting the secure hash Hj with the relevant state information in

18

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28, 2009 at 17:14 from IEEE Xplore. Restrictions apply.

approach using a combination of simulation and implementa­
tion. Based on our evaluations we observe that our solution
is highly effective in preventing state overload attacks while
introducing only minimal overhead in the network.

The rest of this paper is organized as follows. Section II
summarizes how the PIM-Join mechanism works and why
it is vulnerable to attack. Section III describes our modified
protocol including its operation, its evaluation, and partial
deployment strategies. Finally, Section IV concludes the paper.

II. PROBLEM DESCRIPTION

In this section, we briefly examine how PIM joins work and
why the existing procedure is vulnerable to DoS attacks.

A. PIM Join Mechanism

PIM supports two types of join operations: (1) shared tree
joins, and (2) source specific joins. Shared tree joins are used
to establish a shared tree between the receivers and a pre­
selected special router, called the Rendezvous Point (RP).
Since the RP is a domain-local router, the join message and the
state created are also local. Hence, state overload attacks using
shared tree joins can have only a limited, localized effect. In
source specific joins, the receivers join directly to the multicast
source, S, of a group, (S,G). Since S can be located anywhere
in the Internet, attacks via source specific joins are extremely
potent, impacting potentially any local or remote victim sites.
Therefore we focus on source specific join attacks in this
paper.

In PIM, the designated router of a receiver, DR(R), creates a
new Join(S,G) message and forwards it towards the designated
router of the source, DR(S). All the routers between DR(R)
and DR(S) create forwarding state for the (S,G) group as
the join message propagates towards S. Routers forward join
messages on their shortest path interface towards the source.
This interface is called the incoming inteiface (iif) or reverse
path forwarding interface (IntRP F) for the group. For each iif
entry, the router also includes all the interfaces from which it
received PIM-Join messages in an outgoing inteiface list (oif)
for the group. A router needs to create new forwarding state
for a PIM-Join for each distinct (S,G) group. In source specific
multicast, a single source can support up to 224 multicast
groups, all of which can be used to generate distinct Join(S,Gi)

messages.
The forwarding state created is "soft", i.e. it expires if no

refresh message arrives from downstream. Each state entry is
associated with an entry-timer (ET) and each interface in the
oif for the entry is associated with an oif-timer (OT). When
the router receives a PIM-Prune message on an interface, i, in
oif, it removes i from oif. Alternatively, if no refresh message
arrives on i during a Join Hold Time period (the default is
260 seconds), OTi expires and i is removed from oif. Finally,
when oif becomes empty and the ET expires, the router sends
a Prune(S,G) message on its iif interface for the group and
leaves the multicast tree.

B. State Overload Attacks

A vulnerability in the existing PIM-Join procedure that is
exploited in a state overload attack is that DR(R) issues a

18

PIM-Join message without verifying whether the source or
the group exist. The Join(S,G) message (legitimate or bogus)
propagates towards S creating forwarding state at all routers on
the R-to-S path. Since the routers do not have any mechanism
to verify the validity/existence of the source or the group, they
will maintain the (S,G) state as long as R, who could be an
attacker, sends a refresh message.

Consider an attack scenario that proceeds in rounds. For
the first round of 260 seconds (or the local default Join Hold
Time), the attacker generates distinct bogus join messages to
create unwanted state information in the routers. In subsequent
rounds, it sends refresh messages to continue to maintain
the state at the routers. If there are multiple attackers, the
amount of state information maintained at routers could be
prohibitively large. For example, in a directed end system
attack, if there are 5,000 zombies (attackers), with each zombie
issuing 10 separate join requests per minute, at the end of the
first round, the routers at the target site will need to store
more than 200,000 different multicast entries. Similarly, an
infrastructure attack can be launched with attackers choosing
highly used paths to target routers at the core of the network.
In this case, the attacks are less targeted and the state created
would potentially be distributed among multiple core routers.
Considering the same attack parameters as before, in the worst
case, a core router may end up storing up to 200,000 different
entries. In both attacks, the number of entries that can be
created is prohibitively large. The above discussion suggests
that a solution to the problem must involve a verification of
the validity of the source and the groups being subscribed
to in a join message. We expect that the routers are suitably
provisioned to handle the legitimate join requests so that joins
to legitimate groups will not create an attack. In the rest of this
paper, we present an approach to include such a verification
mechanism in the multicast join process.

III. MODIFIED MULTICAST JOIN PROCEDURE

A. Modified PIM Joins

The objective of the modified join procedure is to ensure
that before creating any state, every router in the forwarding
path can individually verify the validity of the source and the
group being subscribed to in the join. This verification ensures
that bogus join messages sent by malicious receivers cannot
create unwanted state in the routers.

During join forwarding, routers do not create any forward­
ing state, but instead add the requisite state information to the
join message before sending it upstream towards the source.
Each on-tree router, R j , appends this state information as
a nonce, say Nj , to the end of a nonce block in a new
Join(S,G,N) message. The state information added includes
the incoming interface, ij , of the join message and a secure
hash of all the locally added state, H j (a detailed description
of the state added is deferred to Section III-B).

If the source and the group in the Join(S,G,N) message are
valid, the accumulated state information is returned by DR(S)
in a new JoinACK(S,G,N) message. Each router, R j , in the re­
turn path individually verifies the JoinACK(S,G,N) by recom­
puting the secure hash H j with the relevant state information in

DRR...........S

N= NDR N=N+ NR N=N+ NR
Step 1-3~ R1

Join(S,G,N) Join(S,G,N) Join(S,G,N)

Step 2 C JACK(S,G,N) JACK(S,G,N) JACK(S,G,N)
N=N-N R N=N-N R N=N-N R

Step 3 - Multicast Data on (S,G) C-

Stepl: Append N and forward Join(S,G,N) toward S
Step 2: JoinACK propagates toward R; routers remove N corresponding to themselves
Step 3: Multicast data propagates on the established (S,G) path

Fig. 1. Modified PIM-Join procedure.

the nonce Nj. This ensures that the received JoinACK(S,G,N)
is a valid acknowledgment of the Join(S,G,N) that Rj had pre-
viously forwarded upstream. Once the verification is complete,
Rj creates a forwarding entry for (S,G) with ij as the oif and
IntRPF(S) as the iif for the group. Once the JoinACK reaches
and is verified by DR(R), the join process is complete.

This operation is visually presented in Figure 1. Figure 2
presents a detailed description of router operation after the
proposed modifications to the PIM-Join mechanism. As can
be seen from Figure 2, the proposed modifications do not
introduce any backward compatibility problems as the routers
can process both the existing Join(S,G) and the proposed
Join(S,G,N) messages.

The state diagram of a router operating with our modified
PIM protocol is shown in Figure 3. It has two states: No-
Info (NI) and Joined (J). In the NI state, the router has no
knowledge of the existence of a group, i.e., it maintains no
(S,G) state about the group. In the J state the router maintains
a forwarding entry for (S,G), and keeps an entry-timer (ET)
and an oif-timer (OT) for each interface in oif for (S,G). We
briefly discuss the state transitions for the routers below:
NI State
In this state, there are two events that cause a router, Rj, to
take different actions:

* (1) Receiving JoinACK(S,G,N) on interface, k, for a
Join(S,G,N): Verify k = IntRPF(S); verify Nj and update
N = N - Nj; forward JoinACK(S,G,N) if required; create
(S,G) state; initialize ET and OT timers; and move to J
state.

* (2-a) Rj = DR(S) and receives Join(S,G)/Join(S,G,N):
Verify the validity of (S,G) (by checking with S); create
(S,G) state; initialize ET and OT timers; in the case of
Join(S,G,N), send a JoinACK(S,G,N) on the interface in
oif; and move to J state.

* (2-b) Rj #t DR(S) and receives Join(S,G)/Join(S,G,N):
Add relevant state, Nj, to the incoming join message and
forward a Join(S,G,N) message toward S on IntRPF(S).

J State
In this state there are four events that cause the router, Rj, to
take different actions:

* Receiving Join(S,G)/Join(S,G,N) on interface, i: Re-
fresh its ET for (S,G); set oif = oif U{i} and start OT for
i. In addition, on Join(S,G,N), send a JoinACK(S,G,N)
on t.

Fig. 2. Router operation for modified PIM joins.

Receiving JoinACK(S,G,N) on interface, k, for a

Join(S,G,N) on i: Verify k = IntRPF(S); verify Nj and
update N = N - Nj; forward JoinACK(S,G,N) on interface
i toward Ri-1. Set oif = oif U{i} and start OT for i.

IntRPF(S) change or join timer expiry: Send Join(S,G)
on IntRPF(S). Here Rj issues a Join(S,G) rather than
Join(S,G,N) as the (S,G) is already verified prior to the
creation of (S,G) state at Rj. In this case, IntRPF(S) could
change due to a unicast routing change. A join timer
is used to trigger the transmission of periodic refresh
messages upstream.
Receiving Prune(S,G) on interface, i, or OT for i
expires: Set oif = oif - {i}. If oif is empty, send
Prune(S,G) on IntRPF(S); remove (S,G) state; and move

to NI state.

B. Authenticating Joins
In the modified join procedure, every router, Rj, adds

a nonce, Nj, to a Join(S,G,N) message. When the
JoinACK(S,G,N) is returned, Rj retrieves Nj for verification
and then creates the forwarding state for (S,G). Nj has to
carry the requisite information which will allow Rj to create
the forwarding state for (S,G). It should also carry path

19

1 /* At a router Rj *1
2 On receiving Join(S,G) on an interface i
3 IF (S,G) state exists at and (i X oif)THEN
4 oif = oif U{i}
5 IF (S,G) state NOT exists THEN
6 IF Rj = DR(S) THEN
7 IF (S,G) group is valid
8 Create (S,G) state with iif = IntRPF(S); oif = i
9 ELSE
10 Compute Nj and Append Nj to N
11 Send Join(S,G,N) on interface k = IntRPF(S) toward S

12 On receiving Join(S,G,N) on an interface i
13 IF (S,G) state exists at and (i X oif) THEN
14 oif = oif U{i} AND Send JoinACK(S,G,N) on i
15 IF (S,G) state NOT exist THEN
16 IF Rj = DR(S) THEN
17 IF (S,G) group is valid
18 Create (S,G) state with iif = IntRPF(S); oif i
19 Send JoinACK(S,G,N) on i
20 ELSE
21 Append Nj to N
22 Send Join(S,G,N) on interface k = IntRPF(S)

23 On receiving JoinACK(S,G,N) on an interface k for a Join(S,G,N) on i
24 IF k = IntRPF(S) THEN
25 Recompute and verify Nj
26 IF (S,G) state NOT exists
27 Create (S,G) state with oif = i; iif = IntRPF(S)
28 Modify N = N - Nj
29 Send JoinACK(S,G,N) on i

30 On receiving Prune(S,G) on an interface i or OT for i expires
31 Remove oif = oif {i}
32 IF oif is empty THEN
33 Send Prune(S,G) on IntRPF(S)
34 Remove (S,G) state from forwarding state table

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28, 2009 at 17:14 from IEEE Xplore. Restrictions apply.

N= NDR R N=N+ NR 1 N=N+ NR

Step ! ~ Join(S,G,N) Join(S,G,N) Join(S,G,N)

Step2~
JACK(S,G,N) JACK(S,G,N) JACK(S,G,N)

N=N-N R, N=N-N R, N=N-N R"

Step 3 eo----- Multicast Data on (S,G)

Step!: Append N and forward Join(S,G,N) toward S

Step 2: JoinACK propagates toward R; routers remove N corresponding to themselves

Step 3: Multicast data propagates on the established (S,G) path

Fig, L Modified PIM-Join procedure,

the nonce Nj . This ensures that the received J oinACK(S,G,N)
is a valid acknowledgment of the Join(S,G,N) that R j had pre­
viously forwarded upstream. Once the verification is complete,
R j creates a forwarding entry for (S,G) with ij as the oif and
IntRPF(S) as the iif for the group. Once the JoinACK reaches
and is verified by DR(R), the join process is complete.

This operation is visually presented in Figure 1. Figure 2
presents a detailed description of router operation after the
proposed modifications to the PIM-Join mechanism. As can
be seen from Figure 2, the proposed modifications do not
introduce any backward compatibility problems as the routers
can process both the existing Join(S,G) and the proposed
Join(S,G,N) messages.

The state diagram of a router operating with our modified
PIM protocol is shown in Figure 3. It has two states: No­
Info (NI) and Joined (1). In the NI state, the router has no
knowledge of the existence of a group, i.e., it maintains no
(S,G) state about the group. In the J state the router maintains
a forwarding entry for (S,G), and keeps an entry-timer (ET)
and an oif-timer (OT) for each interface in oif for (S,G). We
briefly discuss the state transitions for the routers below:
NI State
In this state, there are two events that cause a router, R j , to
take different actions:

• (1) Receiving JoinACK(S,G,N) on interface, k, for a
Join(S,G,N): Verify k = IntRPF(S); verify N j and update
N = N - Nj ; forward JoinACK(S,G,N) if required; create
(S,G) state; initialize ET and OT timers; and move to J
state.

• (2-a) R j = DR(S) and receives Join(S,G)/Join(S,G,N):
Verify the validity of (S,G) (by checking with S); create
(S,G) state; initialize ET and OT timers; in the case of
Join(S,G,N), send a JoinACK(S,G,N) on the interface in
oif; and move to J state.

• (2-b) Rj cJ DR(S) and receives Join(S,G)/Join(S,G,N):
Add relevant state, Nj , to the incoming join message and
forward a Join(S,G,N) message toward S on IntRPF(S).

J State
In this state there are four events that cause the router, R j , to
take different actions:

• Receiving Join(S,G)/Join(S,G,N) on interface, i: Re­
fresh its ET for (S,G); set oif = oif U{ i} and start OT for
i. In addition, on Join(S,G,N), send a JoinACK(S,G,N)
on i.

19

1 /* At a router Rj */
2 On receiving Join(S,G) on an interface i
3 IF (S,G) state exists at and (i ~ oif)THEN
4 oif = oif = U{i}
5 IF (S,G) state NOT exists THEN
6 IF Rj = DR(S) THEN
7 IF (S,G) group is valid
8 Create (S,G) state with iif = lnt RP F (S); oif = i
9 ELSE
10 Compute N j and Append N j to N
11 Send Join(S ,G,N) on interface k = IntRP F(S) toward S

12 On receiving Join(S,G,N) on an interface i
13 IF (S,G) state exists at and (i ~ oif) THEN
14 oif = oif U{ i} AND Send JoinACK(S,G,N) on i
15 IF (S,G) state NOT exist THEN
16 IF Rj = DR(S) THEN
17 IF (S,G) group is valid
18 Create (S,G) state with iif = lnt RP F (S); oif = i
19 Send JoinACK(S,G,N) on i
20 ELSE
21 Append Nj to N
22 Send Join(S,G,N) on interface k = IntRP F(S)

23 On receiving JoinACK(S,G,N) on an interface k for a Join(S,G,N) on i
24 IF k = IntRP F(S) THEN
25 Recompute and verify N j
26 IF (S,G) state NOT exists
27 Create (S,G) state with oif = i; iif = IntRP F(S)
28 Modify N = N - N j
29 Send JoinACK(S,G,N) on i

30 On receiving Prune(S,G) on an interface i or OT for i expires
31 Remove oif = oif - {i}
32 IF oif is empty THEN
33 Send Prune(S,G) on IntRP F(S)
34 Remove (S,G) state from forwarding state table

Fig. 2. Router operation for modified PIM joins.

• Receiving JoinACK(S,G,N) on interface, k, for a
Join(S,G,N) on i: Verify k = IntRPF(S); verify N j and
update N = N - Nj ; forward JoinACK(S,G,N) on interface
i toward Rj - 1 . Set oif = oif U{i} and start OT for i.

• IntRPF(S) change or join timer expiry: Send Join(S,G)
on IntRPF(S). Here R j issues a Join(S,G) rather than
Join(S,G,N) as the (S,G) is already verified prior to the
creation of (S,G) state at R j . In this case, IntRP F(S) could
change due to a unicast routing change. A join timer
is used to trigger the transmission of periodic refresh
messages upstream.

• Receiving Prune(S,G) on interface, i, or OT for i
expires: Set oif = oif - {i}. If oif is empty, send
Prune(S,G) on IntRP F(S); remove (S,G) state; and move
to NI state.

B. Authenticating Joins

In the modified join procedure, every router, R j , adds
a nonce, Nj , to a Join(S,G,N) message. When the
JoinACK(S,G,N) is returned, Rj retrieves Nj for verification
and then creates the forwarding state for (S,G). Nj has to
carry the requisite information which will allow R j to create
the forwarding state for (S,G). It should also carry path

Rcv PJ/PJN on i
Restart ET for (S,G)
IF oif = NULL send PJ upstream
oif = oif U{i]
Start OT for i
IF PJN send JACK downstream

Fig. 4. Nonce, Nj, ad

/ << ~~~~~~~~~~~~~~RcvJACK on k for a PJN on i
~~t\ ~~Rcv PR on i or OT for i expires X Verify k = Int RPF(S)

Doleftoif stia Verify N j andsetN = N N
iI i

Send JACK downstream
\ ~~~~~SendPR upstream Restart ET for (S,G)

Fig.3SttmciofrDelete(S ,G) state _oif = oif Utci and start OT for i

Rcv JACK on k for a PJN on i\
Verify k =Int RPF(S) Int RPF(S) changes or JT expires
Verify N J and set N = N - Nur

N)kCreate (S,G) state keye hs of (,) ,a teun
9)bInitialize ET and OT

t J Send JACK downstream

Fig. 3. StateRci p e w ther, Rr, with our modified PIM protocol.

LowP uses the extracted information and its current (or last few)
keys to create a 64-bit keyed hash of (S,G), i, and the current

ACk(S, G, i, timer) (or last few) counter values. It then authenticates the JoinACK
by comparing this hash with the one in Nj that arrived with

lded atruter, Rj.the JoinACK. After this verification is complete, the routerlded atruter, R7.proceeds with the rest of the join process as described in
Section 111-A.

information to ensure that the JoinACK(S,G,N) is returned
downstream along the same path as the original join upstream.
Additionally, the nonce has to be secure against modification,
brute force, and replay attacks during its valid duration.

Routers can create this nonce by including (1) the 16-bit
incoming interface, i, for the incoming join, (2) the lower order
16 bits of the IP address of the downstream router forwarding
the join, and (3) a keyed-hash or MAC of the group address,
the incoming join interface, i, and an ascending counter T
(see Figure 4). The nonce created is bound to a specific group,
(S,G), and interface, i. The nonce, Nj, is then appended to the
end of the nonce block, N, in the join message before it is
forwarded upstream. The combination of 16-bit interface ID, i,
and the lower order 16 bits of the IP address of the downstream
router enable the current router, Rj, to derive the reverse path
for the JoinACK when it is received later from an upstream
router. Note here that the JoinACK will always take the reverse
of the original Join path, irrespective of the network level path.
A keyed hash like HMAC-SHA or HMAC-MD5 can be used to
create a 64-bit hash string in the nonce. The hash creation can
be done without modification and without noticeable overhead
in most routers. The secret key, k, is randomly generated by
the router and can be varied at a rate slower than the clock
to provide added security against brute force attacks on the
nonce.
On the return path, when a router, Rj, receives a

JoinACK(S,G,N), it first performs an RPF check on the
incoming interface of the JoinACK(S,G,N). The RPF check
amounts to a lightweight authentication of the upstream router.
The RPF check along with the presence of a timer in the hash
prevents replay attacks using the same nonce. Rj then extracts
Nj from the head of N. Nj includes i and (S,G). The router

C. Discussion

We now briefly discuss some important issues with our
proposed solution. The modified PIM protocol effectively
prevents a receiver from overloading routers with state for
bogus (S,G) groups. This feature, however, assumes that the
sender is not malicious and is not sourcing bogus groups. In
this case, malicious senders and receivers can co-operate with
each other to launch an infrastructure attack. To protect against
malicious sources, the modified protocol can be combined with
source authentication mechanisms [9] at the source's domain.
This additional component can ensure the validity of a source
and group being subscribed to and prevent these attacks.

Another issue is related to packet fragmentation. Since,
in the proposed solution, routers append information to the
forwarded join messages, fragmentation possibilities should be
considered carefully. The standard PIM-Join message, which
includes a single group subscription, is 24 bytes. In our
approach, each on-tree router appends 12 bytes to the end
of the join message. Therefore, the size of a join message is
24 + (12 * n) where n is the number of routers on the path.
Assuming n= 4 0 which is a safe estimate for the Internet today,
the maximum size of a modified join message is 504 bytes.
Given the fact that IP requires a minimum MTU of 576 bytes,
the proposed approach should not cause any fragmentation.

Another issue is the possible loss of JoinACK packets in
the network. In such a situation, the routers from the point
of loss in the reverse path downstream will not create state
entries while state entries will be created upstream. In this
scenario, if the receiver does not issue a new Join request, the
created states will be dissolved upon timeout. If the receiver
issues a new Join request before the timeout, the JoinACK will

20

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28, 2009 at 17:14 from IEEE Xplore. Restrictions apply.

Rev PJIPJN on i
IF R j 1= DR(S)

N=N+Nj

Rev PJ/PJN on i

IF ~{i;; ~~ci~)
Create (S,O) state

Initialize ET and OT

Rev PJ/PJN on i
Restart ET for (S ,O)
IF oif = NULL send Pl upstream

oif = oif U {i}

Forward PJN upstream IF PJN Send JACK downstream Start OT for i
IF PJN send JACK dO'Wllstream

\
NI

Rev PR on i or OT for i expires
1----- oif~oif-{ij

Rev JACK on k for a PJN on i
Verify k = Int RPF(S)

VerifyN j andsetN=N-N j

Send JACK downstream

Restart ET for (S,O)

Pl Join(S,G)
PJN Join(S,G,N)
JACK JoinACK(S,G,N)
PR Prune(S,G)

IF oif=NULL

Send PR upstream

Delete S G state

Rev JACK on k for a PJN on i
Verify k =Int RPF(S)

VerifyN j andsetN=N N j

Create (S,O) state

Initialize ET and OT

Send JACK downstream

oif= oif U {i} and start OT for i

Int RPF(S) changes or JT expires

Send Pl on Int RPF(S)

Fig. 3. State machine of a router, Rj, with our modified PIM protocol.

o 15 16 31

Incoming Inerface i I Lower order 16 bits ofIP

64-bit Keyed Hash MACkCS, G, i, timer)

Fig. 4. Nonce, Nj, added at router, Rj.

information to ensure that the JoinACK(S,G,N) is returned
downstream along the same path as the original join upstream.
Additionally, the nonce has to be secure against modification,
brute force, and replay attacks during its valid duration.

Routers can create this nonce by including (1) the l6-bit
incoming interface, i, for the incoming join, (2) the lower order
16 bits of the IP address of the downstream router forwarding
the join, and (3) a keyed-hash or MAC of the group address,
the incoming join interface, i, and an ascending counter T
(see Figure 4). The nonce created is bound to a specific group,
(S,G), and interface, i. The nonce, Nj , is then appended to the
end of the nonce block, N, in the join message before it is
forwarded upstream. The combination of 16-bit interface ID, i,
and the lower order 16 bits of the IP address of the downstream
router enable the current router, R j , to derive the reverse path
for the JoinACK when it is received later from an upstream
router. Note here that the JoinACK will always take the reverse
of the original Join path, irrespective of the network level path.
A keyed hash like HMAC-SHA or HMAC-MD5 can be used to
create a 64-bit hash string in the nonce. The hash creation can
be done without modification and without noticeable overhead
in most routers. The secret key, k, is randomly generated by
the router and can be varied at a rate slower than the clock
to provide added security against brute force attacks on the
nonce.

On the return path, when a router, R j , receives a
JoinACK(S,G,N), it first performs an RPF check on the
incoming interface of the JoinACK(S,G,N). The RPF check
amounts to a lightweight authentication of the upstream router.
The RPF check along with the presence of a timer in the hash
prevents replay attacks using the same nonce. R j then extracts
Nj from the head of N. Nj includes i and (S,G). The router

20

uses the extracted information and its current (or last few)
keys to create a 64-bit keyed hash of (S,G), i, and the current
(or last few) counter values. It then authenticates the J oinACK
by comparing this hash with the one in Nj that arrived with
the JoinACK. After this verification is complete, the router
proceeds with the rest of the join process as described in
Section III-A.

C. Discussion

We now briefly discuss some important issues with our
proposed solution. The modified PIM protocol effectively
prevents a receiver from overloading routers with state for
bogus (S,G) groups. This feature, however, assumes that the
sender is not malicious and is not sourcing bogus groups. In
this case, malicious senders and receivers can co-operate with
each other to launch an infrastructure attack. To protect against
malicious sources, the modified protocol can be combined with
source authentication mechanisms [9] at the source's domain.
This additional component can ensure the validity of a source
and group being subscribed to and prevent these attacks.

Another issue is related to packet fragmentation. Since,
in the proposed solution, routers append information to the
forwarded join messages, fragmentation possibilities should be
considered carefully. The standard PIM-Join message, which
includes a single group subscription, is 24 bytes. In our
approach, each on-tree router appends 12 bytes to the end
of the join message. Therefore, the size of a join message is
24 + (12 * n) where n is the number of routers on the path.
Assuming n= 40 which is a safe estimate for the Internet today,
the maximum size of a modified join message is 504 bytes.
Given the fact that IP requires a minimum MTU of 576 bytes,
the proposed approach should not cause any fragmentation.

Another issue is the possible loss of JoinACK packets in
the network. In such a situation, the routers from the point
of loss in the reverse path downstream will not create state
entries while state entries will be created upstream. In this
scenario, if the receiver does not issue a new Join request, the
created states will be dissolved upon timeout. If the receiver
issues a new Join request before the timeout, the JoinACK will

700
Normal Join +

Join ACK x
600 - Modified Join X

500 _

400 x _

300

200

100

0

0 200 400 600 800
Experiment number

(a) Processing overhead at a router.

1000

U80 Normal Join 120 Unmodified protocol
10 70M_I\odified Join x v Modified Protocol x

70

0 100 x
60 -- 0

-0
H 50 U

40 2 4 6 8 10 12 0204060

30 oo
40

20

20

0

0 2 4 6 8 10 12 04 0 20 40 60 80 100 120

Number of hops between sender and receiverVOlume of attack traffic in joins/sec

(b) Latency perceived by receiver. (c) Percentage of completed joins.

Fig. 5. Evaluation Results.

be returned by the first router with an established state entry
upstream and the Join request will be completed as normal.

D. Evaluation

In this section, we evaluate the overhead introduced by our

modified PIM protocol and its performance under DoS attacks.
Processing overhead at a router: We use a Linux-based
router to measure the processing overhead in computing and
verifying the nonce in the modified joins. For this measure-

ment, we use the sample implementation of HMAC-MD5
from RFC 2104 [11]. For the unmodified version of the PIM
protocol, we use the implementation available in the Linux
kernel.

Our metric for comparison is the total time taken from
reception of a join message to processing and forwarding
it upstream. For the modified protocol, we also measured
the time taken from reception of a JoinACK from upstream
to verify it and send it downstream. The Join requests are

generated at a rate of 5000 requests/second and the averaged
time taken over 5 seconds was measured. Each experiment was

repeated 1000 times and the results are shown in Figure 5(a).
Figure 5(a) shows that per-node processing overhead is

about 4 times higher for a modified PIM-Join as compared to a

normal PIM-Join. However, from an end-user's point of view,
the perceived latency is a more important metric as it indicates
the overall performance impact of the modified protocol. The
perceived latency includes additional components like queuing
and propagation delay at routers. To evaluate the end-to-
end latency as perceived by a user, we performed Network
Simulator 2 (ns-2) simulations to compare the delay incurred
in the modified and unmodified cases. The metric of interest
is the total time from the user issuing a PIM-Join request
until it starts receiving multicast data from the group. Here,
we assume that as soon as the PIM-Join request (modified or

unmodified) arrives at the source site, the source starts sending
multicast data.

In our simulations, we used the 90th percentile values from
the previous experiments as the nodal processing time incurred
at on-tree PIM routers. Figure 5(b) presents the results of our

simulations. As can be seen from the figure, the total latency,
as perceived by an end-user, is virtually identical for both
cases. This result is because, in a network, the inter-nodal
latency, which is on the order of milliseconds, becomes much

more significant than the per-node processing overhead, which
is on the order of microseconds. As a result, the end-user
perceives very little difference in the delay introduced by these
two protocols.
Percentage of completed joins under attack: To evaluate the
resistance of the modified protocol to state overload attacks,
we performed various experiments in ns-2 using a simulated
network topology (see Figure 6). In our experiments, users

attempt to join a remote group while the routers on the path
are subject to state overload attacks of varying magnitudes.
The evaluations are performed under the assumption that there
is no loss in the network because the objective of the attack
is not to congest the network but to overload the routers. In
addition, we assume that the designated router at the source

site can distinguish between legitimate and malicious joins
based on the group address in the join message. As we showed
in Section II, with a distributed attack generated by 5000
zombies, routers in the vicinity of the victim may need to
store as many as 200,000 entries. To simplify our simulation,
we consider attacks of smaller magnitudes (25 zombies at its
peak) and a smaller state buffer threshold (i.e., the number
of entries a router can accommodate before it starts dropping
new requests).

In the simulations, a legitimate user issues join requests
at the rate of 5 joins/sec while the attack traffic is varied
from 0 to 125 joins/sec. The results displayed are for a state
buffer threshold value of 200 entries. The metric used is the
percentage of completed legitimate joins. Figure 5(c) shows
the results for the modified and the unmodified protocol. As
can be seen in the unmodified protocol, the percentage of
completed joins decreases exponentially as the rate of attack
increases because the legitimate and the attack traffic compete
for the same limited buffer space. The modified protocol
meanwhile maintains a 100 % completion rate because only
legitimate joins create state. Our evaluation demonstrates that
our modified PIM protocol is highly effective in preventing
state overload attacks. In addition, the processing overhead
required in routers is higher, but it does not cause a noticeable
performance degradation for the end user.

E. Partial Deployment Scenario

Our proposed solution requires all PIM routers to be updated
to support the modified join operation. In this section, we

21

U)

0

09u
U)Uv
0

u

aL)

Eq

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28, 2009 at 17:14 from IEEE Xplore. Restrictions apply.

00 7oo'---~----~----~-Ncr-m-al~~-i"--+-' 00
'0

80,---~--~--~----~--~--~
0:
o

'0 Join ACK
!:: 600 Modified Join o
U
(]) 500
00
o
H
U

-ri
E

0: 70
o
~ 60

00
-r-! 50
r-<

~ 40

E

Normal Join ---+--­
Mo::lifia:l Join

/f_·-_____ >A

-r-! 120
-i-!
(])

~ 100

E
o
u

4-<
o

80

60

0:
-ri

0:
30 I 1!,40

-r-I 20 / .::3

~ 10 / @ 20

-r-! __ J~ ~+--"~L-'!1~~~~-,J4(U
E-< OL-="=---"=----~ __ ~ ____ ~ __ ~ __ ___.l ~ OL---~----~----~--~----~

o 200 400 600 800 1000 o 2 4 6 8 10 12 0... 0 ~ 40 00 00 100 1~

Experiment number Number of hops between sender and receiverVolume of attack traffic in joins/sec

(a) Processing overhead at a router. (b) Latency perceived by receiver. (c) Percentage of completed joins.

Fig. 5. Evaluation Results.

be returned by the first router with an established state entry
upstream and the Join request will be completed as normal.

D. Evaluation

In this section, we evaluate the overhead introduced by our
modified PIM protocol and its performance under DoS attacks.
Processing overhead at a router: We use a Linux-based
router to measure the processing overhead in computing and
verifying the nonce in the modified joins. For this measure­
ment, we use the sample implementation of HMAC-MD5
from RFC 2104 [Ill. For the unmodified version of the PIM
protocol, we use the implementation available in the Linux
kernel.

Our metric for comparison is the total time taken from
reception of a join message to processing and forwarding
it upstream. For the modified protocol, we also measured
the time taken from reception of a J oinACK from upstream
to verify it and send it downstream. The Join requests are
generated at a rate of 5000 requests/second and the averaged
time taken over 5 seconds was measured. Each experiment was
repeated 1000 times and the results are shown in Figure 5(a).

Figure 5(a) shows that per-node processing overhead is
about 4 times higher for a modified PIM-Join as compared to a
normal PIM-Join. However, from an end-user's point of view,
the perceived latency is a more important metric as it indicates
the overall performance impact of the modified protocol. The
perceived latency includes additional components like queuing
and propagation delay at routers. To evaluate the end-to­
end latency as perceived by a user, we performed Network
Simulator 2 (ns-2) simulations to compare the delay incurred
in the modified and unmodified cases. The metric of interest
is the total time from the user issuing a PIM-Join request
until it starts receiving multicast data from the group. Here,
we assume that as soon as the PIM-Join request (modified or
unmodified) arrives at the source site, the source starts sending
multicast data.

In our simulations, we used the 90th percentile values from
the previous experiments as the nodal processing time incurred
at on-tree PIM routers. Figure 5(b) presents the results of our
simulations. As can be seen from the figure, the total latency,
as perceived by an end-user, is virtually identical for both
cases. This result is because, in a network, the inter-nodal
latency, which is on the order of milliseconds, becomes much

21

more significant than the per-node processing overhead, which
is on the order of microseconds. As a result, the end-user
perceives very little difference in the delay introduced by these
two protocols.
Percentage of completed joins under attack: To evaluate the
resistance of the modified protocol to state overload attacks,
we performed various experiments in ns-2 using a simulated
network topology (see Figure 6). In our experiments, users
attempt to join a remote group while the routers on the path
are subject to state overload attacks of varying magnitudes.
The evaluations are performed under the assumption that there
is no loss in the network because the objective of the attack
is not to congest the network but to overload the routers. In
addition, we assume that the designated router at the source
site can distinguish between legitimate and malicious joins
based on the group address in the join message. As we showed
in Section II, with a distributed attack generated by 5000
zombies, routers in the vicinity of the victim may need to
store as many as 200,000 entries. To simplify our simulation,
we consider attacks of smaller magnitudes (25 zombies at its
peak) and a smaller state buffer threshold (i.e., the number
of entries a router can accommodate before it starts dropping
new requests).

In the simulations, a legitimate user issues join requests
at the rate of 5 joins/sec while the attack traffic is varied
from 0 to 125 joins/sec. The results displayed are for a state
buffer threshold value of 200 entries. The metric used is the
percentage of completed legitimate joins. Figure 5(c) shows
the results for the modified and the unmodified protocol. As
can be seen in the unmodified protocol, the percentage of
completed joins decreases exponentially as the rate of attack
increases because the legitimate and the attack traffic compete
for the same limited buffer space. The modified protocol
meanwhile maintains a 100 % completion rate because only
legitimate joins create state. Our evaluation demonstrates that
our modified PIM protocol is highly effective in preventing
state overload attacks. In addition, the processing overhead
required in routers is higher, but it does not cause a noticeable
performance degradation for the end user.

E. Partial Deployment Scenario

Our proposed solution requires all PIM routers to be updated
to support the modified join operation. In this section, we

consider a method which can provide a temporary solution to
ISPs supporting our protocol when the neighboring domains
do not support the modifications. In this discussion, we refer
to routers with the updated PIM protocol as modified routers
and the routers employing the non-updated PIM version as
legacy routers. For our protocol to function properly, the
modified routers require a valid JoinACK message from their
upstream neighbors. Downstream routers can be legacy routers
without affecting the protocol which will function normally in
the domains with modified routers. If a modified router is a
domain edge router having a PIM neighborhood relationship
with a legacy router of a neighboring domain, it will not be
able to receive JoinACK messages.

To deal with such cases, we introduce a proxy-based ap-
proach for an ISP supporting our proposed protocol. In this
approach, the ISP can deploy state boxes at the edges of its
domain. The state boxes are high capacity storage devices
capable of handling large amounts of data. When an edge
router, Re, of the domain detects (as a result of periodic PIM
Hello message exchange) that its next hop neighbor in the
neighboring domain is a legacy router, it removes and forwards
the accumulated nonce information from the join messages
to the local state box. This state is maintained for a small
duration of time (e.g., 260 seconds), and is indexed under the
appropriate (S,G) value of the incoming join message. The
edge router, Re, then forwards an unmodified join message
upstream towards the source.

If the source is valid and is transmitting regularly, data
coming from this source will flow down the established path
to the edge router, Re. Re verifies with the state box if an
entry for this (S,G) exists in it. If an entry exists, Re retrieves
the state information from the local state box and issues
a JoinACK with the stored state information downstream,
thereby establishing forwarding state in the routers in its
domain. This state caching operation is visually presented
in Figure 7. Until the (S,G) group is verified as valid and
the JoinACK is issued, all multicast data for the group from
upstream will be redirected by Re for temporary storage at the
state box. After the JoinACK is issued, the buffered multicast
data for the (S,G) group is retrieved from the state box
and sent downstream along the newly established multicast
path towards the receiver. If the source is invalid or has not
transmitted for a long period of time, the state is dissolved at
the state box to reclaim the state buffer occupied by this state.

In this solution, the state-boxes are a possible point of
attack if the attack volume is excessively high. Considering the
numbers used previously in Section II and with a worst-case
scenario of 40 hops between the attackers and R, this could
amount to 2 . 6M* 504=48MB of state information at the end
of 260 seconds. Common storage devices are available today
with capacities in the range of 40 to 300 GB, so overflowing
a state-box with excess state is implausible.

IV. CONCLUSION

DoS attacks pose a serious problem to the health and
security of value-added services in the Internet. In this paper,
we have examined DoS attacks, called state overload attacks,

D(S) DR(R) R

_ /PIM routers

L Zombies

Fig. 6. Simulated network topology.

Nonce

=A Address Interface MAC
, , < Join(S,G,) / R I lvi

Join(S,G,N) N=N + N 3 / J\ ,'.R2 I2 XL
N=N + N 2 ;; ., , R I Ml

ClUser\rs < ~~~~~~~~~~~--------_

Modified Router State Box Group Nonce TT
S,G) N, 260

Legacy Router

Fig. 7. Partial deployment case.

for a specific service, multicast. Since the attacks exploit an
inherent weakness in the PIM protocol, we proposed a set of
modifications to make it more secure against these attacks. The
modifications provide an effective solution against DoS attacks
without creating noticeable performance loss or latency for the
end user. Also, our solution can be incrementally deployed in
the inter-domain and can provide an equally effective defense
for the domains that do deploy it.

REFERENCES

[1] K. Almeroth, "The evolution of multicast: From the MBone to inter-
domain multicast to Internet2 deployment," IEEE Network, vol. 14,
pp. 10-20, January/February 2000.

[2] S. Shenker and J. Wroclawski, "General Characterization Parameters for
Integrated Service Network." Internet Engineering Task Force (IETF),
RFC 2215, September 1997.

[3] B. Krishnamurthy and C. Wills, "On the use and performance of content
distribution networks," in Proceedings of ACM SIGCOMM Internet
Measurement Workshop, (San Fransisco, USA), November 2001.

[4] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, "Practical net-
work support for IP traceback," in Proceedings of ACM SIGCOMM,
(Stockholm, SWEDEN), August 2000.

[5] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, "Deploy-
ment issues for the IP multicast service and architecture," IEEE Network,
vol. 14, pp. 78-88, January/February 2000.

[6] P. Savola, R. Lethonen, and D. Meyer, "PIM-SM Multicast Routing
Security Issues and Enhancements," October 2004. Internet Engineering
Task Force (IETF) draft, work in progress.

[7] D. Estrin et al., "Protocol Independent Multicast Sparse-Mode (PIM-
SM): Protocol Specification." Internet Engineering Task Force (IETF),
RFC 2362, June 1998.

[8] M. Handley and A. Greenhalgh, "Steps towards a DoS-resistant Internet
Architecture," in Proceedings ofACM SIGCOMM Workshop on Future
Directions in Network Architecture, (Portland, OR, USA), August 2004.

[9] K. Ramachandran and K. Almeroth, "MAFIA: A Multicast Management
Solution for Access Control and Packet Filtering," in Proceedings of
MMNS, (Belfast, IRELAND), September 2003.

[10] R. Lehtonen, J. Soini, J. Majalainen, and H. Vatiainen, "MCOP Opera-
tion for first hop routers," June 2004. Internet Engineering Task Force
(IETF) draft, work in progress.

[11] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-hashing for
message authentication." Internet Engineering Task Force (IETF), RFC
2104, February 1997.

22

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 28, 2009 at 17:14 from IEEE Xplore. Restrictions apply.

consider a method which can provide a temporary solution to
ISPs supporting our protocol when the neighboring domains
do not support the modifications. In this discussion, we refer
to routers with the updated PIM protocol as modified routers
and the routers employing the non-updated PIM version as
legacy routers. For our protocol to function properly, the
modified routers require a valid J oinACK message from their
upstream neighbors. Downstream routers can be legacy routers
without affecting the protocol which will function normally in
the domains with modified routers. If a modified router is a
domain edge router having a PIM neighborhood relationship
with a legacy router of a neighboring domain, it will not be
able to receive JoinACK messages.

To deal with such cases, we introduce a proxy-based ap­
proach for an ISP supporting our proposed protocol. In this
approach, the ISP can deploy state boxes at the edges of its
domain. The state boxes are high capacity storage devices
capable of handling large amounts of data. When an edge
router, Re , of the domain detects (as a result of periodic PIM
Hello message exchange) that its next hop neighbor in the
neighboring domain is a legacy router, it removes and forwards
the accumulated nonce information from the join messages
to the local state box. This state is maintained for a small
duration of time (e.g., 260 seconds), and is indexed under the
appropriate (S,G) value of the incoming join message. The
edge router, Re , then forwards an unmodified join message
upstream towards the source.

If the source is valid and is transmitting regularly, data
coming from this source will flow down the established path
to the edge router, Re. Re verifies with the state box if an
entry for this (S,G) exists in it. If an entry exists, Re retrieves
the state information from the local state box and issues
a JoinACK with the stored state information downstream,
thereby establishing forwarding state in the routers in its
domain. This state caching operation is visually presented
in Figure 7. Until the (S,G) group is verified as valid and
the JoinACK is issued, all multicast data for the group from
upstream will be redirected by Re for temporary storage at the
state box. After the J oinACK is issued, the buffered multicast
data for the (S,G) group is retrieved from the state box
and sent downstream along the newly established multicast
path towards the receiver. If the source is invalid or has not
transmitted for a long period of time, the state is dissolved at
the state box to reclaim the state buffer occupied by this state.

In this solution, the state-boxes are a possible point of
attack if the attack volume is excessively high. Considering the
numbers used previously in Section II and with a worst-case
scenario of 40 hops between the attackers and Re , this could
amount to 2. 6M*504=48MB of state information at the end
of 260 seconds. Common storage devices are available today
with capacities in the range of 40 to 300 GB, so overflowing
a state-box with excess state is implausible.

IV. CONCLUSION

DoS attacks pose a serious problem to the health and
security of value-added services in the Internet. In this paper,
we have examined DoS attacks, called state overload attacks,

22

~DR(S) DR(R)

E3 PIM routers

D Zombies

Fig. 6. Simulated network topology.

~Users

~ Modified Router D State Box

~ Legacy Router

Fig. 7. Partial deployment case.

Nonce

Address Interface MAC

for a specific service, multicast. Since the attacks exploit an
inherent weakness in the PIM protocol, we proposed a set of
modifications to make it more secure against these attacks. The
modifications provide an effective solution against DoS attacks
without creating noticeable performance loss or latency for the
end user. Also, our solution can be incrementally deployed in
the inter-domain and can provide an equally effective defense
for the domains that do deploy it.

REFERENCES

[1] K. Almeroth, "The evolution of multicast: From the MBone to inter­
domain multicast to Internet2 deployment," IEEE Network, vol. 14,
pp. 10-20, January/February 2000.

[2] S. Shenker and J. Wroc1awski, "General Characterization Parameters for
Integrated Service Network." Internet Engineering Task Force (IE1F),
RFC 2215, September 1997.

[3] B. Krishnamurthy and C. Wills, "On the use and performance of content
distribution networks," in Proceedings of ACM SIGCOMM Internet
Measurement Workshop, (San Fransisco, USA), November 2001.

[4] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, "Practical net­
work support for IP traceback," in Proceedings of ACM SIGCOMM,
(Stockholm, SWEDEN), August 2000.

[5] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, "Deploy­
ment issues for the IP multicast service and architecture," IEEE Network,
vol. 14, pp. 78-88, January/February 2000.

[6] P. Savoia, R. Lethonen, and D. Meyer, "PIM-SM Multicast Routing
Security Issues and Enhancements," October 2004. Internet Engineering
Task Force (IE1F) draft, work in progress.

[7] D. Estrin et aI., "Protocol Independent Multicast Sparse-Mode (PIM­
SM): Protocol Specification." Internet Engineering Task Force (IE1F),
RFC 2362, June 1998.

[8] M. Handley and A. Greenhalgh, "Steps towards a DoS-resistant Internet
Architecture," in Proceedings of ACM SIGCOMM Workshop on Future
Directions in Network Architecture, (Portland, OR, USA), August 2004.

[9] K. Ramachandran and K. Almeroth, "MAFIA: A Multicast Management
Solution for Access Control and Packet Filtering," in Proceedings of
MMNS, (Belfast, IRELAND), September 2003.

[10] R. Lehtonen, J. Soini, J. Majalainen, and H. Vatiainen, "MCOP Opera­
tion for first hop routers," June 2004. Internet Engineering Task Force
(IETF) draft, work in progress.

[11] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-hashing for
message authentication." Internet Engineering Task Force (IETF), RFC
2104, February 1997.

