JI. of Interactive Learning Research (2008) 19(3), 489-508

Design, Implementation and Deployment
of PAIRwise

ALLAN KNIGHT AND KEVIN ALMEROTH
University of California-Santa Barbara, USA
aknight@cs.ucsb.edu
almeroth@cs.ucsb.edu

BRUCE BIMBER
University of California-Santa Barbara, USA
bimber@cits.ucsb.edu

Increased access to the Internet has dramatically increased the
sources from which students can deliberately or accidentally
copy information. This article discusses our motivation to
design, implement, and deploy an Internet based plagiarism
detection system, called PAIRwise, to address this growing
problem. We give details as to how we detect plagiarism and
the various development phases we went through before
releasing PAIRwise as an open source software tool. Our
major conclusion is that it is possible to deploy an automated
plagiarism system that is an effective, customizable, and
affordable tool for investigating how plagiarism affects acad-
emic integrity.

INTRODUCTION

Plagiarism has long been a problem in academia. Compounding this
problem more recently is the creation of the Internet, which has greatly
expanded the sources from which to plagiarize. Furthermore, a high per-
centage of certain populations currently use the Internet. For example,
Nielsen estimates that 68.6% (Nielsen NetRatings, 2006) of the U.S. popu-
lation uses the Internet. The danger with the growth of these sources for pla-
giarism is the destruction of academic integrity. Whereas students of the past
only had access to information in libraries and from fellow students, today’s
students have access to an overabundance of sources: their library, their fel-
low students, and thousands of libraries and students around the world. And,

mailto:aknight@cs.ucsb.edu
mailto:almeroth@cs.ucsb.edu
mailto:bimber@cits.ucsb.edu

490 Knight, Almeroth, and Bimber

not only is there more sources for students to plagiarize from, but students
can search for these sources instantaneously. This increasing problem should
be leading academic institutions to employ all means necessary to prevent
and detect plagiarism. Many institutions, however, have not employed any
such plagiarism detection means. Many instructors, and even institutions,
are ignoring the problem in the hope that it will disappear. With a new gen-
eration of students that are Internet savvy, and who may not even understand
that copying the work of others is plagiarism, ignoring the problem can only
have a negative impact on everyone’s perceptions of academic integrity.

The problem is that traditional manual techniques for plagiarism detec-
tion are inadequate, especially given the Internet. Manual identification of
plagiarism is time-consuming, inefficient and easily circumvented. In order
for instructors or graders to manually identify instances of plagiarism, they
are not only required to read every assignment, but must also know all the
sources of potential plagiarism. Furthermore, this process takes a great deal
of time. Lastly, changing the tense or wording of a copied piece of text often
easily circumvents manual plagiarism detection techniques. While deter-
rence, vigilance, and assignment creation guidelines can reduce the problem
of plagiarism, automated techniques provide the best means to make plagia-
rism detection techniques efficient and harder to circumvent.

To meet the need for automated plagiarism detection, Turnitin.com,
MyDropBox, and others have created commercial ventures. These ventures,
however, introduce further problems that are not easily overcome. The first
problem is expense. Both Turnitin.com and MyDropBox are for-profit orga-
nizations and charge considerable fees for their services. The deployment of
either system, at any level, from the individual instructor to an entire insti-
tution, is quite expensive. This cost can range from $100 per quarter per
class, to tens of thousands of dollars per department per academic year.
While these systems may be affordable for some institutions, they are not
affordable for all. A further problem is the legal issues associated with using
such services. There have been several successful court cases concerning the
privacy issues associated with using for-profit plagiarism detections ser-
vices. The result is that students at these institutions are no longer being
required to submit assignments to commercial sites. Besides privacy issues,
there can be copyright issues as well. Submitting an assignment to one of
these sites may transfer copyright ownership to the site, which, in general, is
not desirable for students or their institutions. One final issue with these sys-
tems is their lack of visualization techniques for comparing student assign-
ments and potential plagiarism sources. Currently, these systems report
scores for each assignment as to its overall uniqueness. These reporting
schemes also do no address situations where groups of students plagiarize
from each other. For example, a group of more than two students might
share a significant amount of work.

Design, Implementation and Deployment of PAIRwise 491

The goal of the PAIRwise plagiarism detection system is to address all of
these issues. First, PAIRwise is open source. This fact means that, not only
is PAIRwise affordable, since the source code is available for free, it is also
fully customizable. Furthermore, because PAIRwise can be easily deployed
for any size of user population by a university, the issues of privacy and
copyright ownership do not exist. Finally, PAIRwise also offers a novel visu-
alization module that allows users, not only to see how much of each stu-
dent’s assignment is copied from another source, but also relationships
between multiple sources by displaying all the assignment pairs that have
verbatim matches above a configurable threshold. This unique feature
allows for the identification of groups of students that copy from each other.

The key goals of PAIRwise are to be both affordable and effective. This
article illustrates that PAIRwise meets both of these goals. First, as a freely
licensed, open source project, PAIRwise is affordable. The only barrier to
installing PAIRwise is having a computer with a supported operating system
to install it on and the personnel with the necessary computer experience. Sec-
ond, PAIRwise is demonstrably capable of detecting plagiarism. The evalua-
tion section in this article enumerates examples of PAIRwise identifying
potential plagiarism from other students as well as the Internet in students’
assignments from real courses at the University of California, Santa Barbara.

The research in this article shows that the possibility exists to effectively
and affordably deploy a plagiarism detection system that scales from an
individual instructor to a single institution and perhaps beyond. Further-
more, this research contributes to the scientific evaluation of such systems,
something that is lacking for commercial services. Finally, PAIRwise, and
its related research, facilitates the study of the social impact of both plagia-
rism detection systems and plagiarism itself. Our hope is that PAIRwise is
the beginning of a dialog within institutions and between institutions on the
impact of plagiarism on education and the integrity of academia in general.

This article is organized as follows. The second section discusses other
research related to PAIRwise. The third section outlines the design, imple-
mentation, and deployment of PAIRwise. Next, the fourth section discusses
our methodology to evaluate PAIRwise and the results. The last section
offers concluding remarks that outline the accomplishments of our research
associated with PAIRwise.

RELATED WORK

The work related to our research deals with both the impact of plagiarism
and systems for detecting plagiarism. In the following, we discuss this
research and discuss how PAIRwise extends the research in this area.

We first discuss the works of others with regard to the concept of plagiarism
since the goal of our research is to investigate the impact of plagiarism on aca-

492 Knight, Almeroth, and Bimber

demic integrity. There are two main points in this body of research: quantify-
ing plagiarism and deterring plagiarism. While there is no possible way to put
an upper bound on the amount of plagiarism occurring, there have been sever-
al attempts to quantify the lower bound. Most notably, the most recent work by
McCabe (2002) found that 72% of high school students admitted to having
committed at least one instance of serious cheating and 15% have submitted
work copied from electronic sources. Others, such as Braumoeller (2001), used
electronic means to find that 1 out of 8 students improperly used material from
other sources. While these studies surely suggest a lower bound for how preva-
lent the problem is, they do not give an upper bound.

Even before the possibility of electronically searching for cases of pla-
giarism, the academic community has sought to inform educators about
techniques to avoid plagiarism. The Joint Information Systems Committee
(JISC) wrote a guide (Carroll, 2001) entirely devoted to the issue of plagia-
rism. This guide covers not only how to “design out” plagiarism in assign-
ments, but also gives guidance on how to prosecute offenders and engage
students as partners in fighting plagiarism. No mention is made, however, on
how to detect plagiarism on a large scale.

The role of PAIRwise is to help quantify plagiarism, guiding educators
and deterring plagiarism from the start. By giving educators a tool for reli-
ably detecting Internet plagiarism, as well as plagiarism of other students’
assignments, PAIRwise looks to contribute to the problem of how best to
protect and maintain integrity in academics.

As for research and projects related to plagiarism detection systems, two
Biophysicists at the University of California, Berkeley, originally started the
work most related to our project. Their work eventually turned into a private
venture: Turnitin.com, formerly known as plagiarism.org (Turnitin.com,
2003). While they seek to accomplish many of the same goals, their
approach to the problem is very different from ours. Turnitin.com has its
own servers with terabytes of information, collected from crawling the Web,
subscribing to term paper mill sites, and collecting past assignments sub-
mitted to their services. Entire assignments are then compared against this
database of sources.

Where we differ is in the philosophy of how to do the searches. While we
both seek to find sources on the Internet, we feel their process is heavy-
weight. They can catch every single copied sentence but at a significant time
cost as they search each sentence against all the data they have collected. We
instead look to intelligently select sentences that are likely candidates and
flag an assignment as suspicious if those sentences are found in sources on
the Internet. And then, like them, let the instructor determine if the student
has acted improperly in borrowing from a source. Our framework, like that
of Turnitin.com, can easily be connected to any database of text, whether
that database is the Internet or a collection of past assignments.

Design, Implementation and Deployment of PAIRwise 493

One issue of concern for Turnitin.com is the legality of transferring a
copy of each student’s assignment to an outside organization. While some
argue that transferring the copyright ownership violates students’ rights
(Paulson, 2002), Turnitin.com reassures institutions this is not an issue since
it falls into the category of fair use. However, we still believe that (a) this
issue has not been properly resolved, and (b) the use of Turnitin.com may
also violate students’ privacy. Employing an internal system has the benefit
of avoiding these privacy and legal issues.

Another body of related work is CopyFind (Plagiarism Resource Site,
2003). The algorithm and measure of uniqueness used by PAIRwise are very
similar and CopyFind has had a great deal of influence on the creation of
PAIRwise. While CopyFind’s goal is also to detect plagiarism, its search
domain is more limited. Rather than finding borrowed text from the Internet,
CopyFind compares a collection of student assignments to each other.
Assignments with enough similarity are flagged for further inspection.
CopyFind, however, has no ability to determine if sources are copied from
the Internet. Finally, there is a simple way to circumvent CopyFind. By
using the “Track Changes” feature of Microsoft Word, the possibility of
adding noise to the saved copy of a document is possible. Therefore, what
the user sees is the final version of a document, but the binary representa-
tion, however, is significantly different and may fool the CopyFind system
into giving a high uniqueness score for exactly the same content. PAIRwise
avoids this problem by comparing the onscreen content rather than process-
ing the binary data contained in document files.

Other related work deals with collecting digital media. SCAM (Shivyku-
mar, 1995) and CHECK (Si, Leong, Lau, & Rynson, 1997) find similarities
among documents in a common database. While their main focus is to find
similar documents in a file system or other database of digital media, they dif-
fer from our work in one major respect. They look at similarities of docu-
ments as a whole, not at individual sentences. These systems do not flag doc-
uments that have less than 25% similarity. We are working in a context where
overall similarity is not necessarily important because some plagiarism may
involve only copying a few sentences. If we find that the average student
assignment is 100 sentences long and we want to flag all assignments with at
least five possibly copied sentences, then the threshold for similarity is only
about 5%. Furthermore, these systems tend not to take any contextual simi-
larities into consideration. This limitation makes these systems easy to defeat
by merely changing words throughout a copied document.

Still another body of work concentrates on finding plagiarism within
computer programming assignments. MOSS (Boyer and Hall, 1999) and
Sherlock (Joy and Luck, 1999) are two examples. However, these solutions
are similar to CopyFind in that they only look for duplicates among a single
set of assignments and do not have the ability to look at external data

494 Knight, Almeroth, and Bimber

sources. Another well know system for detecting plagiarism in programming
assignments is SID (Chen 2002). While it aspires to the same goal, it is quite
different. SID uses a measure of similarity based on Kolmogorov complex-
ity, which is universal. The truly unique feature of SID is the fact that
because the Kolmogorov complexity is universal, SID, in theory, is not
cheatable. While SID exclusively finds similarities in code, an altered ver-
sion could possibly detect similarities in plain text.

PAIR

The origin of PAIRwise derives from a research effort called Paper
Authorship Integrity Research (PAIR). The PAIR effort is part of the on
going efforts of the Center for Information Technology and Society (CITS)
at the University of California, Santa Barbara. The goals of the PAIR project
are twofold. The first goal is to explore the impact of the Internet on plagia-
rism in the classroom. The second goal is to understand the impact of an
automated plagiarism system when used in the classroom. For example,
does checking assignments for plagiarism with an automated system actual-
ly reduce the amount of plagiarism, especially if students are aware of these
efforts? And, if they do know about these efforts, what are their feelings
about the use of an automated plagiarism detection system?

PAIR is an interdisciplinary effort involving scientists from several
diverse fields of research as well as university administrators. These
research fields include computer science and political science. Together, the
researchers combine their expertise for creating an automated system with
their expertise for measuring the social implications of such a system. The
University of California Santa Barbara’s Office of Instructional Consultation
supplied computers and resources for both the collection and processing of
student assignments in support of this research effort.

Before beginning this research, we knew we needed a system for auto-
mated comparison of student assignments to each other, to past instances of
classes, and to the Internet. While commercial services already existed to
fulfill this need, using these systems, as previously mentioned, was prob-
lematic. And while non-commercial research and open-source systems also
existed, these systems did not provide all the functionality needed. The lack
of a viable system ready-to-deploy within the university led to an effort by
the PAIR team to design, implement, and deploy its own system. This new
system came to be known as PAIRwise.

PAIRwise

PAIRwise is the realization of a system that compares multiple text doc-
uments to each other to determine their similarity. The design and develop-

Design, Implementation and Deployment of PAIRwise 495

ment required two phases. The first phase sought to identify techniques to
collect documents from the Internet. This phase designed and implemented
a rudimentary system to download files found using Internet search engines.
These files were compared to student assignments to determine if the assign-
ment contained improper source material. The second phase took the lessons
learned from the first and designed, implemented, and deployed a complete
system for automated plagiarism detection. This final system, which came to
be known as PAIRwise, compares assignments to those found on the Inter-
net, those in the same class, and any other set of archived assignments from
past classes. A further description of these two phases now follows.

Phase 1: Preliminary Research

The preliminary phase of this research focused on how to use Internet
search engines, such as Google (2003), to find possible instances of plagia-
rism within the text of students’ assignments. There exists a multitude of
techniques to determine (a) whether any part of a student’s work is plagia-
rized, and (b) which parts of that work are plagiarized. The question is how
to determine which passages of a student’s work should be used to create a
search string for and Internet search engine. While an exhaustive search
would catch the most cheaters, we believed that using a more selective
process could significantly reduce the number of searches, and yet, identify
all of the instances of plagiarism that an exhaustive search would find. The
non-exhaustive techniques that we considered range from using every string
of n words in a document, to randomly selecting parts of single sentences.
Below are the different techniques we developed and evaluated.

Exhaustive Searching

Exhaustive searching has the potential to be the most effective way to
detect possible instances of plagiarism. There can be, however, several dif-
ferent interpretations of what “exhaustive” means. One interpretation would
be to search for every combination of words in the assignment. This tech-
nique, though, would result in so many queries to Google, that processing a
single assignment could take several hours. When applied to 400 or more
student assignments, this interpretation of “exhaustive” does not seem
viable. Instead, we interpreted “exhaustive” to mean each sentence. This
interpretation would break every assignment into its individual sentences
and submit the first eight words, and thus greatly reduce the number of
required searches. The determination of “the first eight words” is based on
our anecdotal observations that this number results in the search engine
returning fewer false positives.

The choice of how exhaustive to search affects the number of queries
required. For example, consider exhaustively searching approximately 480
assignments from a lower division college course in Political Science. If

496 Knight, Almeroth, and Bimber

each assignment has approximately 10 pages, using a truly exhaustive
search would require approximately 1,400,000 searches. If, instead, the sys-
tem searches using each sentence, the number of searches is only about
55,000; however, the system can still do better. The next step, then, is to look
at more intelligent techniques to try and reduce the number of search queries
even further. Given that there are quite a number of different possibilities,
the challenge is to choose the one that is effective but does not require a very
large number of searches.

Using Surface Linguistic Features

Linguists have developed many surface linguistic features over the years
(Fry, 1977), (Gunning, 1952), (McLaughlin, 1969). These features usually
involve calculations based on the number of words per sentence and distri-
bution of syllables in each word. While these linguistic features give no
weight to the context of the sentence, research has shown they are effective
in determining the readability of a given work.

A common manual technique used to detect plagiarism is to look for
changes in writing style. The question is how to automate the identification
of changes in writing style? Our hypothesis is that readability scores can
identify these changes in style. By determining the readability score for each
sentence and then choosing the scores below a given threshold, the system
should be able to identify a similar number of plagiarism instances as the
exhaustive techniques do. While intuition suggests that the sentences with
the higher-grade level scores seem to be the most likely candidates, this, in
fact, is often not the case. Grade level scores give some indication as to the
readability and complexity of the text. Previously published writings tend to
be more readable — because of the editing process — than those created by
students. We believe, therefore, that the most likely candidates for plagia-
rism are not at the high end of the grade level score, but at the low end.

To compute the surface linguistic feature, we chose the Flesch-Kincaid
Grade Level Score. Figure 1 gives the formula. For each sentence a score is

(.39 x ASL) + (11.8 x ASW) — 15.59
where:

ASL = average sentence length (the number of words divided by the number of
sentences)

ASW = average number of syllables per word (the number of syllables divided by
the number of words)

Figure 1. Flesch-Kincaid Grade Level Score (Microsoft, 2003)

Design, Implementation and Deployment of PAIRwise 497

calculated. All sentences with a grade level below 10 are sent to an Internet
search engine to see if they exist somewhere in the Internet. All results are
saved and later analyzed to determine if any sentences were plagiarized.

Phase 2: Final Realization of PAIRwise

Based on the lessons learned from Phase 1, we set about to design an
entire system for plagiarism detection. The new system was designed to be a
self-contained, open-source project that is installable and maintainable by
any system administrator. Furthermore, this phase incorporated all of the
techniques explored in the first phase to find potential Internet plagiarism
sources. In the following sections, we outline details of the PAIRwise design.

PAIRwise Design

The PAIRwise plagiarism detection system architecture consists of four
modules. This modular approach is important as it separates the tasks of pla-
giarism detection in such a way that each module is replaceable with a new
implementation without modifying the other modules.

The first module, called the Request Module, allows a user to request
comparisons of student assignments. The second module, called the Con-
version Module, then converts these documents into a single format used by
PAIRwise for document comparison. The format used is plain ASCII text.
This conversion allows for easy comparison and visualization of similarities
between compared documents. The third module, called the Comparison
Module, actually compares each assignment to others within a corpus. This
module can then record the similarity score of each pair of documents as
well as determine relationships between sets of documents with high simi-
larity scores. The final module is the Reporting Module. This module pro-
vides an easy-to-use interface that displays the similarity scores recorded by
the Comparison Module and allows users to examine student assignments to
determine if plagiarism likely occurred.

Request Module

The function of the Request Module is to allow a user to request compar-
isons of student assignments. These requests come in the form of HTML forms
that ask the user for information necessary for PAIRwise to perform the com-
parisons. First, a title is given. The title allows both PAIRwise and the user to
organize the results. Next, the module requests an e-mail address. The module
uses the e-mail address to inform the user about the completion and location of
the results. The email address is entered twice to allow the module to confirm
no mistakes were made. Finally, the module displays to the user information
about the location of student assignments used in a comparison. The module
can display this information in several different forms based on the type of
comparison. Figure 2 shows an example of this interface, which shows a

498 Knight, Almeroth, and Bimber

Loval Comparison of Papers request for a collection of student
w/P ting Student Collection assignments to be compared againSt
@ Tite: all other students in the same class,
@ e-mai: as well as all past instances of the
@ Re-type E-mai:] class.

(ox) (&) One feature not implemented as

1f you wish to compare your files to the Internet, click here. part Of PAIRWISG is a document

Figure 2. Screen shot of the collection module since such sys-
Request Module tems already exist. For both Inter-

net and class comparisons of
assignments, student assignments are expected to already be stored on the
server in a directory created by the system administrator. PAIRwise is then
configured to find student assignments in a particular directory on the serv-
er. The specific manners in which assignments are collected are left to the
system administrator and the user. For example, the user can collect the
assignments by e-mail, and then create an archive file using a utility such as

a0 o
Select a class for comparison:

() Political_Science_12_-_2003
(O Political_Science_12_-_2004
() Political_Science_12_-_2005
()Soc_4_Rlog_01

() Soc_4_RLog_01_internet

() ps12_2003

Select additional classes to be compared to the class selected above:

1Al
[Political_Science_12_-_2003
[Political_Science_12_-_2004
[Political_Science_12_-_2005
[1Soc_4 Rlog 01
[[1Soc_4_Rlog_01_internet
[psi2_2003

(Begin Processiﬂg} I:Clear Selections)

Figure 3. Screen shot of the Request Module, which allows for selection of
the primary student assignment set and secondary student assign-
ment sets

Design, Implementation and Deployment of PAIRwise 499

Zip. This file can then be submitted to the Request Module. The module will
decompress this archive file.

Whether the PAIRwise hosts the collection of assignments directly or
accepts them as an archive file, PAIRwise organizes documents based on the
underlying file system of the PAIRwise host. By collecting the files in a
well-organized directory structure, PAIRwise is able to present the user with
a straightforward interface to choose multiple instances of classes, as well as
other classes to compare student assignments against. For example, if PAIR-
wise is configured to find student assignments in a directory called “/docu-
ments/pairwise,” student assignments can be organized using a subdirectory
for each class within this directory.

By organizing assignments in this way, a user can easily choose which set
of assignments to compare. Figure 3 shows the interface for selecting
assignments to compare. This interface allows the user to select the primary
set of student assignments, shown at the top of the figure. Next, the user can
select student assignments from other classes at the bottom.

After the assignments are selected and the “Begin Processing” button is
pressed, PAIRwise compares the student assignments and sends an e-mail to
the user upon completion.

The Request module consists of a series of HTML pages and templates
combined with CGI scripts. To maintain the same “look-and-feel” through-
out the interface, PAIRwise uses the same HTML templates in the reporting
module outlined later in this section.

Conversion Module

Because students use a wide variety of applications to create their assign-
ments, converting these assignments to a common format is necessary. The
Conversion Module provides this function. Currently, the Conversion Mod-
ule is capable of converting most major word processing file formats along
with HTML, PDF, PostScript, and plain text. Unfortunately, at the time of
development, no libraries existed for converting Microsoft Works® or
OpenOffice documents. Future releases of PAIRwise may be able to handle
conversion of these file formats. The file format used for comparison is
ASCII text because it is easy to process during the comparison phase, and
displays easily during the reporting phase.

The conversion module itself consists of a library, scripts, and third party util-
ities. The process of converting any student assignment into ASCII text starts by
determining the file format. A naive approach to this step is to use the file name
extension to determine the file type. This approach, however, fails approximate-
ly 10% of the time. A better approach, therefore, is necessary. Fortunately, UNIX
provides a utility called “file.” The output of this utility is the type of the file
along with the name of the possible application that produced it.

500 Knight, Almeroth, and Bimber

Once the proper file format is determined, converting the student assign-
ment to ASCII text is necessary. Again, a naive approach to this problem is
to use a pre-existing utility program or library to directly convert the student
assignment into an ASCII text file. This solution, however, produces incon-
sistent results as each utility tends to output text in different ways, or not at
all. A better solution is to convert the assignment to an HTML file and then
use the command-line web-browser Lynx, to format and dump the text to a
file using the —dump flag. PAIRwise uses this process, which produces the
best and most consistent results across all file formats. After completion of
the Conversion Module, the result is a collection of ASCII text files. The
collection is now ready for comparison by the Comparison Module.

Comparison Module

Comparison of student assignments begins after conversion of each stu-
dent assignment to ASCII text. The comparison looks for verbatim matches
between all pairs of documents, and is where PAIRwise gets its name. PAIR-
wise does not, however, count every verbatim match at the word level. To
avoid the situation where function words or common phrases would count as
verbatim matches, it uses a minimum match length to count the amount of
verbatim match. PAIRwise does not remove function words. Therefore, it
counts all strings of consecutive words of at least the minimum match length.
The total number of words in these matches is divided by the total number of
words in a document to determine the verbatim match score. Each document
of a pair will have its own unique score: the percentage of match relative to
the other document. While the Comparison Module counts the verbatim word
match length once, the Comparison Module must make two calculations of
the final score for each document. These scores are then associated with each
document and stored for later use by the Reporting Module.

The Comparison Module requires several steps to count all of the verba-
tim match windows. First, all punctuation is removed to prevent attempts to
circumvent the system by merely changing the punctuation marks within an
assignment. Next, all words are extracted from the document, with order
maintained, and converted to all lower case letters, again, to prevent simple
circumvention techniques. Next, it compares all pairs of student assignments
to find minimum length verbatim matches. The module then removes from
consideration any words that are part of a verbatim match window. The
effect of this step is that the highest possible score is 100%. The module per-
forms this process for all pairs of documents within a corpus of student
assignments or documents from other sources.

The Comparison module then passes the scores to the Reporting Module,
which visually displays all of the PAIRwise scores for the user. The user then
determines if any possible cases of plagiarism exist.

Design, Implementation and Deployment of PAIRwise 501

Reporting Module

The goal of the reporting module is to allow users to easily find possible
instances of plagiarism across pairs of documents. To meet this goal the
Reporting Module produces two graphs: the first is a list of all scores for all
pairs of documents sorted by the verbatim match percentage, and the second
is a graph that zooms in on all scores above 10% verbatim matching. We
chose the score of 10% based on observations that scores below 10% tend
to be normal scores for common phrases used in assignments in the same
class. Furthermore, prosecuting students that have 10% or less of verbatim
match may be difficult if the case is not obvious. Figures 4 and 5 contain
examples of these graphs.

The intent of the graph in Figure 4 is to give the user an overall view of
how much verbatim match occurs in a collection of student assignments. In
this graph, we see that most of the students did not have greater than 10%
text in common, as demonstrated by the long green tail. There is, however,
some concern about a few documents on the far left that warrants further
investigation. Examination of the graph in Figure 5 will help the user iden-
tify instances of likely plagiarism.

The graph of Figure 5 highlights several interesting points. First, the
assignments at the far left, those with greater than 40% in common, repre-
sent actual instances of plagiarism. At first glance, this result may seem like
an epidemic outbreak of cheating, however, this is not the case. Remember,
each bar represents a pair of assignments, and there are two scores recorded
for each pair; therefore two bars are shown for each instance of plagiarism.
Furthermore, this example shows 6 instances of cheating. Taken from a class
of over 300 students, this result, while a concern, is not indicative of wide-
spread plagiarism.

One might also observe in this graph the “mesa effect” created by assign-
ments with approximately 20% or less verbatim matching scores. While this
mesa may point to a large group of student who cheated, upon further inves-
tigation, we found that these students used the same series of quotes from
Senator Dianne Feinstein. Here, PAIRwise found similar text in all the
assignments, but the user determined that no actual plagiarism occurred.

To allow the user to further investigate any pair of documents with ver-
batim match scores greater than 10%, the Reporting Module provides links
to each pair of documents. When a user selects a bar, PAIRwise displays a
side-by-side comparison of the selected pair. Also, if the pointer hovers over
any bar of the graph, the web browser will display a table with information
about the pair. Figure 6 shows a view of this information.

The information displayed in the gray box in Figure 6 shows the assign-
ment pair, with the name of each assignment. Also, the module gives the ver-
batim match score with respect to the first assignment listed under “PAIR.”
Here, the first assignment has a 75% match with assignment “848859-9”.

%01 Uey} 19)edI3 9100S [ojewl WNeqIdA © ym sired juouwugisse [[e Suimoys ydess ojdwexy g ainbi4

Knight, Almeroth, and Bimber

[SRT=C TR CELNETY

YalEp WTBGJSA %OT < YT sdTed Jadey

$2100s Jred yuowugisse [[e Suimoys ydess sjdwexy *p ainbi4

502

&
() WIEl WTRRGAS),

Yolep wrieqJan sdTed Jaded TTd

Design, Implementation and Deployment of PAIRwise 503

- Faper
a0 -

ﬁ G0 -

; 70+

2 e

E 50 L

S et . name:848859-9, .

g . PAIR: .936233-3 Matching: 75%

L oot
0" . name:936233-3 .
0 e name:949356-5

Figure 6. Example information displayed when pointer is hovered over
a red bar

Below these two pieces of information is a list of other assignments, related
to the first, for the user to examine. These two other assignments represent
assignments that also have greater than a 10% match with respect to the first
assignment. In this example, there are two listed, the second assignment in
this pair and also another assignment. Upon further investigation the user
found that a group of three students worked together to produce three sepa-
rate assignments with at least 50% of the text in common between all the
assignments. The school, in this case, decided to suspend each of these stu-
dents for plagiarizing work from each other.

If the user clicks on any red bar, the Reporting Module displays a side-
by-side comparison. An example comparison is shown in Figure 7. This fig-
ure shows two assignments with a high degree of verbatim match. The text
highlighted and underlined represents matching text. The superscript num-
ber next to each chunk of verbatim text is a number that allows the user to
correlate which passages are verbatim matches. The user can click on any of
the numbers in the assignment on the left to find where they occurred in the
assignment on the right. The module underlines matching passages to make
identification easier in the printed version of the assignment. The visualiza-
tion of the side-by-side comparison makes finding instances of plagiarism
easy to find and offers good visual evidence when attempting to prosecute
those students who have plagiarized.

EVALUATION

We performed a qualitative assessment to ascertain whether we met our
two original goals for PAIRwise: for it to be effective and affordable as a
tool to detect plagiarism.

504 Knight, Almeroth, and Bimber

el

-...

As mentioned by Ragsdale'? (2000) since the time following President T.
s term fn office the presidency has become'* a position
ingly ct ized by dek jion, However'*, does this

cases such as this, where the public holds an epinion fueled
by emotion or is pot fully informed in an issee
thierms: s the powes bestow .

Figure 7. Side-by-side view of two student assignments with a high per-
centage of verbatim matches

Effectiveness of PAIRwise

The goal of this section is not to outline PAIRwise’s comparative effective-
ness, but rather to show that PAIRwise is (1) at least as effective as previously
used software and (2) capable of finding instances of Internet plagiarism, a fea-
ture not available in the previously used detection software. After all, as Brau-
moeller (Braumoeller, 2001) states, a plagiarism detection system need not find
all instances of plagiarism in order to deter students from cheating.

To test PAIRwise’s effectiveness, we needed assignments from several
classes as well as results from another plagiarism detection system. Since
our group had already evaluated another plagiarism detections system, we
decided to process the same set of assignments used in this previous effort.
The goal of this round of testing was to determine if PAIRwise was at least
as effective as the system used in the previous work. In addition, since no
Internet comparisons were done as part of the previous work, a large sample
of these assignments was also compared to the Internet. These tests, there-
fore, mirror the exact methodology used in the previous study.

Our evaluation involved collecting all assignments electronically from 10
different offerings of 6 courses involving 7 different instructors. These class-
es included both general education courses and introductory survey courses
at the University of California, Santa Barbara. The instructors for these
classes used three different types of disclosure to students about the use of
PAIRwise. We briefly comment on the relationship between this disclosure
and the number of plagiarism instances detected. Three of the seven instruc-

Design, Implementation and Deployment of PAIRwise 505

tors informed their students only of the plagiarism policy, and did not dis-
close that any plagiarism detection system would be used. Two other instruc-
tors disclosed the use of such a system. The remaining two instructors used
a compromise of the two extremes: they implied, but did not mention explic-
itly, that an automated detection system would be used.

After all assignments were collected, PAIRwise was used to compare
each assignment to other assignments in the course, all previous instances of
the course for which assignments were available, as well as the Internet. The
original study only included comparisons of assignments within the same
course. We found there were identifiable and prosecutable instances of pla-
giarism in approximately 1% of the assignments. That is, of the approxi-
mately 500 papers compared, we found 7 instances of plagiarism. These
instances included 5 from the same course, also found in the previous study.
Another instance found was one across multiple instances of the same
course, also found in the previous study. Finally, PAIRwise found one
instance of Internet plagiarism. This plagiarized assignment was not found
during the previous study because the assignments were not checked against
the Internet. All others assignments with similarity scores above the 10%
threshold were determined to not be prosecutable instances of plagiarism.
We forwarded the prosecutable instances of plagiarism to the proper author-
ities for further investigation. While the conclusions from these results
remain anecdotal, they do give some indication that plagiarism detections
systems are effective in identifying student plagiarism.

Affordability of PAIRwise

PAIRwise is affordable for at least two reasons. First, PAIRwise is avail-
able for download under an open source license. Second, PAIRwise runs on
commodity computers. These two characteristics of PAIRwise make it easi-
ly available to institutions of any size. With a minimal investment of time
and money, institutions as large as universities, and as small as primary
schools can easily download and install PAIRwise and begin using it with a
minimum of both time and money.

Not only is PAIRwise open source and available for download for free,
but so are the libraries it uses. While all the libraries used are either in the
public domain or released under the GNU’s Not UNIX (GNU) General Pub-
lic License (GPL), our own university’s policy requires us to release PAIR-
wise under a slightly more restrictive license called the University of Cali-
fornia Office of the President (UCOP) License. Because of the intellectual
property policies of the University of California system, they have devised
an open source license that allows for free use and redistribution for non-
commercial purposes, but require some form of compensation for commer-
cial use. While this licensing scheme is more restrictive than the GPL, it
does allow most, if not all, educational institutions the ability to use this soft-

506 Knight, Almeroth, and Bimber

ware free of charge. Educational institutions are also free to change and
redistribute PAIRwise, as they see fit, a feature not available in commercial
plagiarism detection systems.

Another barrier to running one’s own plagiarism detection system could
be the expense of purchasing and maintain the necessary hardware. PAIR-
wise, however, avoids this barrier because it can be installed and operated on
commodity PCs. Most commercial plagiarism detection systems are either
entirely run in-house or require investment in expensive hardware. The large
investment in hardware stems from the fact that plagiarism detection systems
usually mirror the entire Internet, or at least a portion of it. PAIRwise, how-
ever, does not require mirroring the Internet. This feature means PAIRwise
has no requirement for large storage devices. Furthermore, the amount of
computational power required by PAIRwise is fairly small. The majority of
the processing time is spent waiting for search results to be returned.

To date, we have developed PAIRwise for use on several platforms. Orig-
inally, we developed PAIRwise for the Linux operating system. This fact
means that anyone with the right experience can install PAIRwise, not only
on Linux, but other UNIX variants as well. For example, while we have not
tested PAIRwise on Solaris, there should be only minor issues with getting
such an installation to work. Mac OS X is also a good candidate for running
PAIRwise. Since the move to the Mach kernel in version 10 of this operat-
ing system, Mac OS X is a fully functional UNIX machine, and as such, a
good candidate for PAIRwise.

The Microsoft Windows operating system, however, presents several
installation challenges, and so far we have not attempted to resolve these
issues. While we have not made attempts to port PAIRwise to the Windows
environment, it is possible. An alternative may be to install PAIRwise in a
Windows environment with Cygwin installed. Cygwin is a port of many
UNIX libraries to the Windows operating system and it may provide the
means necessary to successfully install PAIRwise with a minimum of effort.

CONCLUSION

The original intent of the PAIR effort at CITS was to investigate the soci-
etal affects of plagiarism and to be the catalyst for a dialogue within and
between educational institutions about these effects. At the start of this
research, it became apparent that we needed an effective tool to help detect
possible occurrences of plagiarism. The result of this need was PAIRwise,
which this article has shown to be capable of detecting plagiarism from local
sources as well as Internet sources. PAIRwise also possesses unique charac-
teristics, not present in currently available commercial products for plagia-
rism detection. Because PAIRwise is open source and installable on com-
modity PCs, it is much more affordable than its commercial counterparts.

Design, Implementation and Deployment of PAIRwise 507

Student assignments remain in-house and are not transferred to outside com-
mercial, for-profit companies, which avoids many of the legal issues with
commercial systems. PAIRwise is also extendable and customizable because
of its open source licensing. This extensibility means, not only can an insti-
tution improve upon PAIRwise, but they can also redistribute these changes.
No commercially available system provides access to their software code,
nor allows access to customize and extend it. This point relates to the last
unique feature of PAIRwise: transparency. Because the code can be down-
loaded and viewed, anyone can test the PAIRwise techniques and algo-
rithms. The commercially available systems have no means by which to
measure or compare their effectiveness because of a lack of transparency.
These unique features, as well as PAIRwise’s effectiveness, make it a tool
that has the potential to not only help in the understanding of the societal
effects of plagiarism, but also allow it to positively impact academic integri-
ty in a time of growing Internet popularity and use.

References

Bowyer, KW., & Hall, L.0. (1999). Experience using “MOSS” to detect cheating on programming
assignments. Paper presented at the 29th Annual Frontiers in Education Conference, FIE '99.

Braumoeller, B., & Gaines, B. (2001). Actions do speak louder than words: Deterring plagiarism
with the use of plagiarism-detection software. PS: Political Science & Politics, 34, 835-839.

Carroll, J., & Appleton, J. (2001). Plagiarism: A good practice guide. JISC Learner Experience.
Oxford Brookes University.

Chen, X., Li, M., Mckinnon, B. & Seker, A. (2002). A theory of uncheatable program: Plagiarism
detection and its practical implementation. http://genome.math.uwaterloo.ca/SID/

Fry, E. (1977). Fry's readability graph: Clarifications, validity and extension to level 17. Journal
of Reading, 21. School of Education, Open University.

Google (2003). http://www.google.com.
Gunning, R. (1952). The technique of clear writing. McGraw-Hill.

Joy, M., & Luck, M. (1999). Plagiarism in programming assignments. Equcation, IEEE Transactions
on, 4(2), 129-133.

McCabe, D, Trevino, Linda K., & Butterfield, Kenneth D. (2002). Honor Codes and Other Contextual
Influences on Academic Integrity. Research in Higher Education, 43(3), 357-378.

McLaughlin, H. (1969). SMOG grading -A new readability formula. Journal of Reading, 22, 639-646.

Merriam-Webster Online. (2003). http://www.m-w.com/cgi-bin/dictionary?book=Dictionary
&va=plagiarism

Microsoft. (2003). Readability Scores, Spelling and Grammar. http.//office.microsoft.com/
en-us/word/HP051863181033.aspx?pid=CH060830131033

Nielsen NetRatings (2006). Monthly Web Usage Data. http://www.nielsen-netratings.com/
Paulson, L. (2002). Professors use technology to fight plagiarism. JEEE Computer, 35(8), 23-25.

Plagiarism.org. (2003). Types of Plagiaris, Research Resources. http://www.plagiarism.org/
learning_center/what_is_plagiarism.html

http://genome.math.uwaterloo.ca/SID
http://www.google.com
http://www.m-w.com/cgi-bin/dictionary?book=Dictionary
http://office.microsoft.com
http://www.nielsen-netratings.com
http://www.plagiarism.org

508 Knight, Almeroth, and Bimber

Plagiarism Resource Site (2003). CopyFina, 1.2, http://plagiarism.phys.virginia.edu/software.html

Shivakumar, N., & Garcia-Molina. (1995). SCAM: A copy detection mechanism for digital
documents. Paper presented at the 2nd International Conference on Theory and Practice of
Digital Libraries, Austin, TX

Si, A., Leong, Lau, H., & Rynson W. (1997). CHECK: A document plagiarism detection system.
ACM Symposium for Applied Computing, February, pp. 70-77.

Turnitin.com. (2003). http://www.turnitin.com

http://plagiarism.phys.virginia.edu/software.html
http://www.turnitin.com

Copyright of Journal of Interactive Learning Research is the property of Association for the
Advancement of Computing in Education and its content may not be copied or emailed to multiple
sites or posted to a listserv without the copyright holder's express written permission. However,
users may print, download, or email articles for individual use.

