
Wired Wireless Broadcast Emulation

Daniel Havey, Roman Chertov, Kevin Almeroth
Department of Computer Science

University of California Santa Barbara
Santa Barbara, California 923 16

Email: { dhavey, rchertov, almeroth } @cs.ucsb.edu

Abstract-A wired testbed's usefulness for wireless re­

search hinges on its ability to faithfully reproduce the

wireless medium. One of the key properties of a wireless

medium is its broadcast nature. Wireless broadcast behav­
ior is used in applications such as cell phone and satellite

networks to disseminate the same data to multiple users

as well as perform time synchronization. In this paper, we
investigate two methods that can be used to ascertain if a

given wireless emulator is modeling the broadcast property

correctly. Our results indicate that the better of the two

proposed methods offers micro-second precision.

I. INTRODUCTION

Real-world protocols and applications often cannot be
correctly evaluated using simulation. To solve this prob­
lem, researchers often rely on testbeds. Because testbeds
are composed out of physical nodes, it is a simple
matter of installing the desired protocol or application.
However, in wireless research, testbeds face a number
of serious challenges. Testbeds can be susceptible to
environmental conditions and external, undesirable or
non-reproducible interference. Wireless testbeds can suf­
fer from limited topology options due to physical space
constraints, for example, locating a number of wireless
nodes in a small space can lead to unrealistic results.
Finally, rearranging the testbed topology can be time
consuming.

Wired testbeds are much easier to configure and are
not prone to external interference issues. However, wired
testbeds require an emulation component to be useful for
wireless research. Naturally, the fidelity of the emulation
is directly related to the accuracy of the results that the
testbed can provide. Increased fidelity comes at a cost
of increased configuration, processing, and complexity.
This tradeoff occurs because emulators must be config­
ured to accurately emulate the physical processes that
are the result of communicating over a wireless medium.
Accurately modeling the physical processes in real-time
requires fast emulation nodes, and as a result, adds cost
and complexity to the testbed.

Of critical importance is that not all wireless experi­
ments require absolutely perfect emulation. Accurate re­
sults can be obtained with coarse approximations. One of
the key principle differences between wired and wireless
networks is the broadcast nature of the wireless medium.
Wireless broadcast behavior is the underlying communi­
cation paradigm and also important for applications like
cell phone and satellite networks because it is used to
synchronize time and to disseminate control messages.
The key property of a wireless broadcast is that a packet
will arrive at all nodes within communication range at
almost exactly the same time.

In this paper, we concentrate on exploring methods
to measure broadcast propagation in a wired wireless
emulation setting. Once it can be established that broad­
cast messages can be correctly emulated, it becomes
possible to concentrate on other wireless properties such
as interference, carrier sensing, and the impact of ob­
structions. However, if broadcast messages cannot be
properly emulated, additional emulation complexity is
irrelevant-the emulated behavior is already incorrect.

In a wired wireless emulator, broadcast messages
might not arrive at the nodes at nearly the same time
as nodes can be connected by a number of hubs and
switches. This configuration can result in nodes receiving
a broadcast message at varying times. Even if all the
required testbed nodes are moved to a single switch and
are assigned to the same VLAN, it is still possible for the
nodes to receive broadcast messages at varying times.
When a broadcast packet arrives at the switch, it has
to be replicated and then forwarded to all of the ports
in the VLAN. How quickly these operations can take
place is a function of the switch's backplane processing
capacity. Because of replication, it is entirely possible for
some nodes in the VLAN group to receive the packet at
different times. To measure this effect, we use delay as
our metric. Delay in this context is the time required for
a packet to leave the network driver at the source node,
traverse the switch, and arrive at the network driver of the

receiving node. Comparing the delay values for multiple
nodes receiving a single broadcast packet serves as an
accurate indicator of how well the broadcast behavior
was emulated in the wired testbed.

Measuring delay presents a significant challenge be­
cause of the problem of achieving highly accurate time
synchronization. Terminals must all be closely time
synchronized in order to ascertain if a broadcast packet
has reached all of them at the same time. There are
two primary resources available for micro-precision syn­
chronization: the reference signal from a cell phone
network and the Pulse Per Second (PPS) signal from
the NAVSTAR Global Positioning System (GPS) satellite
constellation. The reference signals can be accessed by
the Network Time Protocol (NTP) daemon, which in tum
skews the local clock towards the reference signal [7].
However, even with the best time synchronization, some
amount of clock difference will still be present. We
define offset as a measure of the clock differences
between the testbed nodes.

In this paper, we present methods to measure offset

and delay with micro-second precision. When develop­
ing these methods, we have made it a priority to use
open-source software running on commodity hardware.
This goal ensures a high degree of portability and appli­
cability of the measurement methods that we developed.
These methods can be used to establish the accuracy of
a wired wireless emulator with respect to the accuracy
with which wireless broadcasts are emulated. To evaluate
the merits of our measurement methods, we created a
wired wireless emulation testbed. Our preliminary results
indicate the effectiveness of our measurement methods
and the feasibility of accurately emulating broadcast
behavior with micro-second accuracy.

The remainder of this paper is organized as follows.
In Section II, we provide an overview of available
wired wireless emulators in which our measurement
techniques could be used. In Section III, we describe
our measurement methods. In Section IV, we describe
the components of our testbed and detail our time
synchronization techniques. In Section V, we present our
experimental results. Finally, we conclude in Section VI.

II. RELATED WORK

Wired wireless emulators such as EMPOWER [9],
and EMWIN [8] use a centralized emulation layer.
Even though these centralized approaches can avoid
time synchronization issues because everything happens
on a centralized controller, these approaches rely on

switching equipment to disseminate messages to end­
user nodes. Variability in the centralized controller or the
switching equipment can result in broadcast messages
being received at varying times.

Non-centralized wireless testbed emulators such as
SEAWIND [6], SWOON [4], and the Scenario Driven
Wireless Emulator by Bateman et al. [l] rely on a
wired configurable testbed similar to University of Utah's
Emulab1• These testbed emulators rely on various link
shaping techniques to approximate a wireless link. Typ­
ically, a special node is used for one or more links
that need to be emulated. Since these testbeds utilize
switching equipment and multiple nodes to propagate
wireless broadcast messages, the quality of the wireless
emulation can suffer if the broadcasts are received at
widely different times.

These different approaches to wired wireless emula­
tion all have their various advantages and disadvantages.
However, in each case, researchers using these emulators
could benefit from our measurement techniques to vali­
date their approaches. This is particularly critical when
performing experiments using protocols that rely on the
broadcast nature of the wireless medium such as Code
Division Multiple Access (CDMA) when it is used in
cellular networks.

Ill. METHODOLOGY

We present two methods to measure the precision of
the time synchronization necessary to compute offset
values. Acquiring the relative clock offsets from the
testbed nodes is necessary to establish how closely they
are synchronized. The better the synchronization, the
more accurate the delay measurements become as they
are computed by taking the time difference between
when nodes send and receive a packet.

A. Direct Offset Measurement

ST1

Client
Timestamp 1

(CT1)

Server
Timestamp

ST1 = ST2

ST2

Server Response

Client
Timestamp 2

(CT2)

Fig. I. Offset measurement timing diagram.

Figure 1 demonstrates the process of computing clock
offsets between two separate nodes. A client program

1 http://www.emulab.net/

records a timestamp at C TI and then sends a HELLO
packet to the server. When the server receives the packet,
it records a timestamp at S TI. It then takes another
timestamp at ST2 and returns its response to the client.
When the client receives the server response, it records
a final timestamp at CT2. The algorithm calls for the
server to record a second times tamp at S T2. However, in
practice, we find that consecutive timestamps yield the
same time, so S T2 = S TI, and we only return a single
timestamp to the client. This method is based on the
NTP algorithm [7], [2].

In the equation below, (CTI - S T 1) represents the
time required for a packet to travel from the client to
the server. The term (C T2 - S T2) is the time required
for the packet to travel from the server to the client. The
term C TI occurs before STJ and C T2 occurs after, so
these terms are of opposite sign leaving only the Offset

if the network is symmetric.

Offset=
(CTl -STl) + (CT2-ST2)

2

B. Composite Delay and Offset Measurements

(1)

The difference between a timestamp TrecvR logged
when a packet reaches the receiving node and a times­
tamp TsentR logged when the packet was transmitted
from the sending node is composed of delay and offset
values. The delay, Ds_R. is the time required for a packet
to traverse the switch from the sending node to the
receiving node. The offset is equal to Os_R as described
in Equation (2).

TrecvR -TsentR = Ds_R + Os_R (3)

Even though this method computes the time differ­
ence, which is composed of delay and offset values, it

is critical to note that if either value can be treated as a

c onstant, then the other value can be easily c omputed.

IV. EXPERIMENTAL SETUP

In this section, we provide a detailed description of
the components of our testbed as well as an overview of
the GPS clocks that we used.

A. GPS Time Synchronizati on

To minimize the clock offset in our testbed, we
used open source software connecting commodity GPS
receivers to an RS-232 serial interface on each of the

In the diagram of Figure 2, we see four nodes con- terminals.
nected via a switch. Node I broadcasts packets to Nodes

2-4. TsI is a timestamp and is logged when a packet is
broadcast from Node I. Tr2-4 are timestamps and are
logged when a broadcast packet is received at Nodes 2-4.

Ts1 Tr2 Tr3 Tr4

Switch

Fig. 2. Composite delay and offset measurements.

In the following discussion, we define timestamp
values as TeventN ode, where event signifies an event
when the timestamp was taken, and Node identifies the
testbed node at which the timestamp was taken.

In the equation below, we observe that the offset
between a sending node and a receiving node, Os_R• is
equal to the time when the packet was sent at the sending
node TsentS minus the time at the receiving node when
the packet was sentTsentR.

Os_R = TsentS -TsentR (2)

RS-232
TX

PPS Signal RX
DCD

USB
+5V

GND

Fig. 3. GPS to RS-232/USB interface diagram.

Figure 3 shows a Garmin LVC 18 bare wire GPS
receiver that is connected to an RS-232 interface for
data acquisition and a USB port for power. We had
to manually splice the cables as this GPS receiver is
primarily designed for marine navigation and not Pulse
Per Second (PPS) signal acquisition. The PPS signal is
carried through the Data Carrier Detect (DCD) pin on
the RS-232 interface along with the transmit and receive
signals in accordance with the RS-232 International
Telecommunication Union (ITU-T) specification.

The GPS receiver communicates with an NTP daemon
by sending National Marine Electronics Institute 0 183
(NMEA) sentences over the RS-232 interface. The open
source SHared Memory PPS (SHMPPS) driver receives

the PPS signal from the GPS on the RS-232 DCD
interrupt. SHMPPS calculates reference clock informa­
tion and sends it to NTP. The NTP daemon gradually
skews the local PC clock towards the SHMPPS clock
reference. The local PC clock has a tendency to oscillate,
thus requiring NTP to keep it in check. Even if two or
more nodes are GPS clock synchronized, they can have
varying offsets between each other because their local
clocks can oscillate differently.

B. Testbed Hardware

In Figure 4, four time servers (TSl-4) are shown. In
our testbed, each was constructed from a Dell Precision
390 with dual core Core2 Duo Intel processor. Each
time server was GPS synchronized as described above
and has two network interfaces, one was built into the
motherboard and was connected to the control plane (not
shown). The other, an Intel Pro 1 Gbps Ethernet card was
connected to the experimental plane.

In addition to the time servers, we constructed two
traffic generator nodes TG 1-2 from Dell Power Edge SC
1430s, each with two quad core AMO Opteron 2350
processors. As with the time servers, the onboard gigabit
Ethernet interface was connected to the control plane
switch. TG 1 had two quad port Intel Pro I Gbps Ethernet
cards connected to the experimental plane and TG2 had
one. All of the testbed nodes use the Click Modular
Router [5] software for packet generation and capture.

The experimental and the control plane were con­
structed from identical Cisco Catalyst 3560 series VLAN
capable gigabit switches.

Cisco 3560 Experimental Plane Switch

Fig. 4. Testbed configuration.

The network device drivers were configured for packet
timestamping as described in the work by Chertov et
al. [3]. This configuration ensures that packets were
timestamped as early as possible to minimize the effect
of processing delays on the timestamp.

V. EXPERIMENTAL RESULTS

This section presents the results from a series of exper­
iments designed to determine if the direct offset or the
composite delay and offset method provides the better

results. Using the better method, we then conducted a
series of measurements to determine how closely in time
the testbed nodes received broadcast packets.

A. Direct Offset Experiments

We connected RS-232 cables from TSl to TS2, TS3,

and TS4. We chose RS-232 cables as they provided a
direct link between the machines and hence there was
no cross traffic to impact the measurements. TS2, TS3,

and TS4 nodes performed message exchange with TSl

as described in Section III-A.
Figure 5 presents offset values computed via Equa­

tion (1) between TS2 and TSl over a 10 minute period
with samples taken once per second. The x-axis shows
time in seconds and the y-axis shows offset in microsec­
onds. A zero value indicates identical times, non-zero
values imply that one clock is slower or faster than the
other one. Ideally, offset should always be zero.

200
'ii) "O
6 100
u Q)
� 0
e
� -100

� -200

-300

100 200 300 400
Time (Seconds)

500

Fig. 5. Clock offset between TS2 and T SJ.

600

Figure 5 shows the offset values oscillating between
-300 µs and 250 µs. Similar behavior was observed for
other nodes as well. We believe that this large amount
of variability is due to either to the RS-232 drivers or
the cards themselves. However, the experiments showed
that our GPS driven time servers were synchronized with
sub-millisecond precision.

B. Composite Delay and Offset Experiments

a) Delay Measurement: The composite measure­
ment approach described in Section III-B can be used to
measure delay or offset if one of the values is known.
In order to eliminate offset and measure delay, we used
TGl (see Figure 4) to broadcast a CBR UDP flow from
one interface. Since the packets had a broadcast MAC
address, the switch replicated them and sent a copy to
each of the other seven interfaces on TG 1.

The experiments were performed with and without
cross traffic. The experiments lasted for three minutes,

TABLE I
DELAY MEASUREMENTS WITHOUT CROSS TRAFFIC.

Rate ethl eth2 eth3 eth4 eth5
ioth

5oth
goth 10th

5oth
goth 10th

5oth
goth 10th

5oth
goth 10th

5oth
goth

I 14 15 18 17 19 22 14 14 15 18 20 23 13 14 15
10 14 14 18 15 18 22 14 14 15 18 19 22 13 14 14

100 14 15 19 14 18 20 14 14 15 18 19 21 13 14 15
500 14 15 19 14 18 20 14 14 15 18 19 21 13 14 14

TABLE II
DELAY MEASUREMENT WITH CROSS TRAFFIC.

Rate ethl eth2
10th

5oth
goth 10th

5oth
goth 10th

I 15 16 22 16 19 22 15
10 14 15 21 15 18 21 14

100 14 15 20 14 18 21 14
500 14 15 20 14 18 21 14

and we repeated every experiment five times. Finally,
we used 64-byte sized packets and used the following
packet rates: 1, 10, 100, and 500 packets per second.
Cross traffic was generated by sending CBR UDP flows
from the four interfaces in TG2 to TSJ-4 nodes. The four
flows send 64, 256, 1200, and 1500-byte packets respec­
tively at 500 packets per second. The delay values were
calculated by using the Equation 3 with the offset set to

zero as the broadcast packets originate and terminate on

TGJ.
Figure 6 shows TGJ's raw delay data over time for

two interfaces when cross traffic was not used. The data
shows little variance with values ranging from 14 µs to
23 µs.

If the variance in delay is small, we can treat it as
a constant and use it to calculate offset values using
Equation 3. Table I and Table II present the 10th, 5oth,
and goth delay percentiles with and without cross traffic,
respectively. The tables only present the values for five
of the seven interfaces. The other two were not included
for the sake of brevity; however, their values are similar.
From these results, we have made two observations.
First, the difference between the 10th and goth per­
centiles is very small, implying low variance. Second,
the delay values are very similar with and without cross
traffic. Although, there were delay values recorded as
high as 4167 µs in the experiments without cross traffic,
and 3625 µs in the experiments with cross traffic, these
values occurred extremely rarely and were most likely
caused by the operating system or hardware delays. The
data indicates that our Cisco 3650 experimental switch
performs broadcast replication very well and we can treat
delay as a constant. From the data, we compute delay to
have an 18 µs value.

The previous experiment has characterized delay. It is
nearly constant indicating that a wired wireless testbed

eth3

5oth

15
14
14
14

eth4 eth5

goth 10th
5oth

goth 10th
5oth

goth

16 18 20 22 14 15 16
15 17 19 21 13 14 15
15 17 19 21 13 14 14
15 17 19 21 13 14 14

148.38 148.4 148.42 148.44 148.46 148.48 148.5 148.52
Time (Seconds)

(a) Interface eth2

148.38 148.4 148.42 148.44 148.46 148.48 148.5 148.52
Time (Seconds)

(b) Interface eth6

Fig. 6. Broadcast delay measurements w/o cross traffic.

can emulate wireless broadcast behavior with a high
degree of accuracy. This result allows us to proceed with
our next experiment to measure the residual clock offset.

b) Offset Measurement: Although the experiment
shown in Figure 5 demonstrated the sub-millisecond
precision of our time servers it did little to show Offset

behavior at sub-millisecond time scales. To investigate
these effects, we broadcast UDP packets in a CBR flow
from TSJ to TS2-4. Using Equation 3 and the 18 µs delay
value calculated previously, we calculate offset value for
each node pair. Just as before, the experiments lasted
three minutes and were repeated five times. TSJ was

configured to send a broadcast flow of 64-byte packets
with the following packet rates: 1, I 0, I 00, and 500
packets per second. Cross traffic was generated by TG2

using the same parameters described previously, except
that the sink was changed from TS 1-4 to TG 1.

2'---'-�-'-�'---'-�-'-�'---'-�-'-�'---'
0 10 15 20 25 30 35 40 45 50

Time (Seconds)

Fig. 7. Offset values at 10 packets per second with no cross traffic.

Figure 7 presents the raw data results from an offset
experiment without cross traffic, and Figure 8 presents
the results from the experiment with cross traffic. Both
graphs are computed from the TS2 node data. The x-axis
describes the experiment time in seconds and the y-axis
is for offset values as measured in microseconds. Both
graphs show offset values well below the + / - 300 µs
values from the experiment in Section V-A. The slight
jitter is caused by the variance in delay observed in the
previous experiment and the slight drift of the clocks.

Ii) "O
c 25
�

Cf) I
e 24 0
�
5l 23
:t:
0

22 '---'-�-'-�'---'-�-'-�'---'-���'--�
0 10 15 20 25 30 35 40 45 50

Time (Seconds)

Fig. 8. Offsets at 10 packets per second with cross traffic.

Over all of the experimental runs, the 10th, 5oth, and
goth offset percentiles are 7 µs, 18 µs, and 53 µs,
respectively. The maximum offset that we observed was
667 µs; however, values larger than 53 µs occurred
extremely rarely. The data indicates that the nodes are
synchronized to less than 100 µs of each other, which
is a much better result than obtained in Section V-A for
the first method.

The delay and the offset measurement experiments
have shown that a wired wireless testbed can emulate

wireless broadcast behavior with a very high degree of
accuracy, and that it is possible to achieve very close time
synchronization by relying on GPS reference signals.

VI. CONCLUSION

In this paper, our goal was to determine if wireless
broadcast behavior can be accurately emulated in a wired
environment. Specifically, we were interested in deter­
mining if in a wired testbed, a broadcast message will
be received at nearly the same time by multiple nodes.
We were interested in identifying validation methods that
could be used by other wireless researchers to determine
the accuracy of broadcast emulation in their testbed. For
this purpose, we constructed a simple GPS-synchronized
testbed and carried out validation experiments. Our re­
sults indicate that it is possible to emulate broadcast
behavior with a high degree of accuracy.

In future work, we plan to investigate the accu­
racy with which a wired wireless testbed can emulate
the collision avoidance behavior of wireless networks.
Understanding collision avoidance behavior emulation
along with the insights gained in this work will provide
a foundation for building a high-fidelity wired wireless
emulator.

REFERENCES

[1] M. Bateman, C. Allison, and A. Ruddle. A scenario driven
emulator for wireless, fixed and ad hoc networks. In Proc. 4th

Annual Postgraduate Symposium on the Convergence of Telecom­

munications, Networking and Broadcasting (PGNet), June 2003.
[2] J. Burbank, W. Kasch, J. Martin, and D. Mills. Net-

work time protocol version 4 protocol and algorithms spec­
ification. Internet-Draft http://www.ietf.org/internet-drafts/
draft-ietf-ntp-ntpv4-proto-11.txt, March 2009.

[3] R. Chertov, S. Fahmy, and N. Shroff. A device-independent
router model. In Proc. of IEEE INFOCOM, April 2008.

[4] Y. Huang et al. Swoon: a testbed for secure wireless overlay
networks. In Proc. of USENIX Cyber Security Experimentation

and Test (CSET) Workshop, pages 1-6, July 2008.
[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.

The Click modular router. ACM Transactions on Computer

Systems, 18(3):263-297, Aug 2000.
[6] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and

K. Raatikainen. Seawind: a wireless network emulator. In
Proc. of 11th GI/ITG Conference on Measuring, Modelling and

Evaluation of Computer and Communication Systems (MMB),

September 2001.
[7] D. Mills. Internet time synchronization: The network time

protocol. Communications, 39(10): 1482-1493, Octeber 1991.
[8] P. Zheng and L. Ni. Emwin: emulating a mobile wireless network

using a wired network. In Proc. of ACM Workshop on Wireless

Mobile Multimedia (WOW MOM), pages 64-71, September 2002.
[9] P. Zheng and L. Ni. EMPOWER: A network emulator for

wireline and wireless networks. In Proc. of IEEE INFOCOM,

volume 3, pages 1933-1942, March 2003.

