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Abstract-A wired testbed's usefulness for wireless re­

search hinges on its ability to faithfully reproduce the 

wireless medium. One of the key properties of a wireless 

medium is its broadcast nature. Wireless broadcast behav­
ior is used in applications such as cell phone and satellite 

networks to disseminate the same data to multiple users 

as well as perform time synchronization. In this paper, we 
investigate two methods that can be used to ascertain if a 

given wireless emulator is modeling the broadcast property 

correctly. Our results indicate that the better of the two 

proposed methods offers micro-second precision. 

I. INTRODUCTION 

Real-world protocols and applications often cannot be 
correctly evaluated using simulation. To solve this prob­
lem, researchers often rely on testbeds. Because testbeds 
are composed out of physical nodes, it is a simple 
matter of installing the desired protocol or application. 
However, in wireless research, testbeds face a number 
of serious challenges. Testbeds can be susceptible to 
environmental conditions and external, undesirable or 
non-reproducible interference. Wireless testbeds can suf­
fer from limited topology options due to physical space 
constraints, for example, locating a number of wireless 
nodes in a small space can lead to unrealistic results. 
Finally, rearranging the testbed topology can be time 
consuming. 

Wired testbeds are much easier to configure and are 
not prone to external interference issues. However, wired 
testbeds require an emulation component to be useful for 
wireless research. Naturally, the fidelity of the emulation 
is directly related to the accuracy of the results that the 
testbed can provide. Increased fidelity comes at a cost 
of increased configuration, processing, and complexity. 
This tradeoff occurs because emulators must be config­
ured to accurately emulate the physical processes that 
are the result of communicating over a wireless medium. 
Accurately modeling the physical processes in real-time 
requires fast emulation nodes, and as a result, adds cost 
and complexity to the testbed. 

Of critical importance is that not all wireless experi­
ments require absolutely perfect emulation. Accurate re­
sults can be obtained with coarse approximations. One of 
the key principle differences between wired and wireless 
networks is the broadcast nature of the wireless medium. 
Wireless broadcast behavior is the underlying communi­
cation paradigm and also important for applications like 
cell phone and satellite networks because it is used to 
synchronize time and to disseminate control messages. 
The key property of a wireless broadcast is that a packet 
will arrive at all nodes within communication range at 
almost exactly the same time. 

In this paper, we concentrate on exploring methods 
to measure broadcast propagation in a wired wireless 
emulation setting. Once it can be established that broad­
cast messages can be correctly emulated, it becomes 
possible to concentrate on other wireless properties such 
as interference, carrier sensing, and the impact of ob­
structions. However, if broadcast messages cannot be 
properly emulated, additional emulation complexity is 
irrelevant-the emulated behavior is already incorrect. 

In a wired wireless emulator, broadcast messages 
might not arrive at the nodes at nearly the same time 
as nodes can be connected by a number of hubs and 
switches. This configuration can result in nodes receiving 
a broadcast message at varying times. Even if all the 
required testbed nodes are moved to a single switch and 
are assigned to the same VLAN, it is still possible for the 
nodes to receive broadcast messages at varying times. 
When a broadcast packet arrives at the switch, it has 
to be replicated and then forwarded to all of the ports 
in the VLAN. How quickly these operations can take 
place is a function of the switch's backplane processing 
capacity. Because of replication, it is entirely possible for 
some nodes in the VLAN group to receive the packet at 
different times. To measure this effect, we use delay as 
our metric. Delay in this context is the time required for 
a packet to leave the network driver at the source node, 
traverse the switch, and arrive at the network driver of the 



receiving node. Comparing the delay values for multiple 
nodes receiving a single broadcast packet serves as an 
accurate indicator of how well the broadcast behavior 
was emulated in the wired testbed. 

Measuring delay presents a significant challenge be­
cause of the problem of achieving highly accurate time 
synchronization. Terminals must all be closely time 
synchronized in order to ascertain if a broadcast packet 
has reached all of them at the same time. There are 
two primary resources available for micro-precision syn­
chronization: the reference signal from a cell phone 
network and the Pulse Per Second (PPS) signal from 
the NAVSTAR Global Positioning System (GPS) satellite 
constellation. The reference signals can be accessed by 
the Network Time Protocol (NTP) daemon, which in tum 
skews the local clock towards the reference signal [7]. 
However, even with the best time synchronization, some 
amount of clock difference will still be present. We 
define offset as a measure of the clock differences 
between the testbed nodes. 

In this paper, we present methods to measure offset 

and delay with micro-second precision. When develop­
ing these methods, we have made it a priority to use 
open-source software running on commodity hardware. 
This goal ensures a high degree of portability and appli­
cability of the measurement methods that we developed. 
These methods can be used to establish the accuracy of 
a wired wireless emulator with respect to the accuracy 
with which wireless broadcasts are emulated. To evaluate 
the merits of our measurement methods, we created a 
wired wireless emulation testbed. Our preliminary results 
indicate the effectiveness of our measurement methods 
and the feasibility of accurately emulating broadcast 
behavior with micro-second accuracy. 

The remainder of this paper is organized as follows. 
In Section II, we provide an overview of available 
wired wireless emulators in which our measurement 
techniques could be used. In Section III, we describe 
our measurement methods. In Section IV, we describe 
the components of our testbed and detail our time 
synchronization techniques. In Section V, we present our 
experimental results. Finally, we conclude in Section VI. 

II. RELATED WORK 

Wired wireless emulators such as EMPOWER [9], 
and EMWIN [8] use a centralized emulation layer. 
Even though these centralized approaches can avoid 
time synchronization issues because everything happens 
on a centralized controller, these approaches rely on 

switching equipment to disseminate messages to end­
user nodes. Variability in the centralized controller or the 
switching equipment can result in broadcast messages 
being received at varying times. 

Non-centralized wireless testbed emulators such as 
SEAWIND [6], SWOON [4], and the Scenario Driven 
Wireless Emulator by Bateman et al. [l] rely on a 
wired configurable testbed similar to University of Utah's 
Emulab1• These testbed emulators rely on various link 
shaping techniques to approximate a wireless link. Typ­
ically, a special node is used for one or more links 
that need to be emulated. Since these testbeds utilize 
switching equipment and multiple nodes to propagate 
wireless broadcast messages, the quality of the wireless 
emulation can suffer if the broadcasts are received at 
widely different times. 

These different approaches to wired wireless emula­
tion all have their various advantages and disadvantages. 
However, in each case, researchers using these emulators 
could benefit from our measurement techniques to vali­
date their approaches. This is particularly critical when 
performing experiments using protocols that rely on the 
broadcast nature of the wireless medium such as Code 
Division Multiple Access (CDMA) when it is used in 
cellular networks. 

Ill. METHODOLOGY 

We present two methods to measure the precision of 
the time synchronization necessary to compute offset 
values. Acquiring the relative clock offsets from the 
testbed nodes is necessary to establish how closely they 
are synchronized. The better the synchronization, the 
more accurate the delay measurements become as they 
are computed by taking the time difference between 
when nodes send and receive a packet. 

A. Direct Offset Measurement 
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Fig. I. Offset measurement timing diagram. 

Figure 1 demonstrates the process of computing clock 
offsets between two separate nodes. A client program 

1 http://www.emulab.net/ 



records a timestamp at C TI and then sends a HELLO 
packet to the server. When the server receives the packet, 
it records a timestamp at S TI. It then takes another 
timestamp at ST2 and returns its response to the client. 
When the client receives the server response, it records 
a final timestamp at CT2. The algorithm calls for the 
server to record a second times tamp at S T2. However, in 
practice, we find that consecutive timestamps yield the 
same time, so S T2 = S TI, and we only return a single 
timestamp to the client. This method is based on the 
NTP algorithm [7], [2]. 

In the equation below, (CTI - S T  1) represents the 
time required for a packet to travel from the client to 
the server. The term (C T2 - S T2) is the time required 
for the packet to travel from the server to the client. The 
term C TI occurs before STJ and C T2 occurs after, so 
these terms are of opposite sign leaving only the Offset 

if the network is symmetric. 

Offset= 
(CTl -STl) + (CT2-ST2) 

2 

B. Composite Delay and Offset Measurements 

( 1) 

The difference between a timestamp TrecvR logged 
when a packet reaches the receiving node and a times­
tamp TsentR logged when the packet was transmitted 
from the sending node is composed of delay and offset 
values. The delay, Ds_R. is the time required for a packet 
to traverse the switch from the sending node to the 
receiving node. The offset is equal to Os_R as described 
in Equation (2). 

TrecvR -TsentR = Ds_R + Os_R (3) 

Even though this method computes the time differ­
ence, which is composed of delay and offset values, it 

is critical to note that if either value can be treated as a 

c onstant, then the other value can be easily c omputed. 

IV. EXPERIMENTAL SETUP 

In this section, we provide a detailed description of 
the components of our testbed as well as an overview of 
the GPS clocks that we used. 

A. GPS Time Synchronizati on 

To minimize the clock offset in our testbed, we 
used open source software connecting commodity GPS 
receivers to an RS-232 serial interface on each of the 

In the diagram of Figure 2, we see four nodes con- terminals. 
nected via a switch. Node I broadcasts packets to Nodes 

2-4. TsI is a timestamp and is logged when a packet is 
broadcast from Node I. Tr2-4 are timestamps and are 
logged when a broadcast packet is received at Nodes 2-4. 

Ts1 Tr2 Tr3 Tr4 

Switch 

Fig. 2. Composite delay and offset measurements. 

In the following discussion, we define timestamp 
values as TeventN ode, where event signifies an event 
when the timestamp was taken, and Node identifies the 
testbed node at which the timestamp was taken. 

In the equation below, we observe that the offset 
between a sending node and a receiving node, Os_R• is 
equal to the time when the packet was sent at the sending 
node TsentS minus the time at the receiving node when 
the packet was sentTsentR. 

Os_R = TsentS -TsentR (2) 
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Fig. 3. GPS to RS-232/USB interface diagram. 

Figure 3 shows a Garmin LVC 18 bare wire GPS 
receiver that is connected to an RS-232 interface for 
data acquisition and a USB port for power. We had 
to manually splice the cables as this GPS receiver is 
primarily designed for marine navigation and not Pulse 
Per Second (PPS) signal acquisition. The PPS signal is 
carried through the Data Carrier Detect (DCD) pin on 
the RS-232 interface along with the transmit and receive 
signals in accordance with the RS-232 International 
Telecommunication Union (ITU-T) specification. 

The GPS receiver communicates with an NTP daemon 
by sending National Marine Electronics Institute 0 183 
(NMEA) sentences over the RS-232 interface. The open 
source SHared Memory PPS (SHMPPS) driver receives 



the PPS signal from the GPS on the RS-232 DCD 
interrupt. SHMPPS calculates reference clock informa­
tion and sends it to NTP. The NTP daemon gradually 
skews the local PC clock towards the SHMPPS clock 
reference. The local PC clock has a tendency to oscillate, 
thus requiring NTP to keep it in check. Even if two or 
more nodes are GPS clock synchronized, they can have 
varying offsets between each other because their local 
clocks can oscillate differently. 

B. Testbed Hardware 

In Figure 4, four time servers ( TSl-4) are shown. In 
our testbed, each was constructed from a Dell Precision 
390 with dual core Core2 Duo Intel processor. Each 
time server was GPS synchronized as described above 
and has two network interfaces, one was built into the 
motherboard and was connected to the control plane (not 
shown). The other, an Intel Pro 1 Gbps Ethernet card was 
connected to the experimental plane. 

In addition to the time servers, we constructed two 
traffic generator nodes TG 1-2 from Dell Power Edge SC 
1430s, each with two quad core AMO Opteron 2350 
processors. As with the time servers, the onboard gigabit 
Ethernet interface was connected to the control plane 
switch. TG 1 had two quad port Intel Pro I Gbps Ethernet 
cards connected to the experimental plane and TG2 had 
one. All of the testbed nodes use the Click Modular 
Router [5] software for packet generation and capture. 

The experimental and the control plane were con­
structed from identical Cisco Catalyst 3560 series VLAN 
capable gigabit switches. 

Cisco 3560 Experimental Plane Switch 

Fig. 4. Testbed configuration. 

The network device drivers were configured for packet 
timestamping as described in the work by Chertov et 
al. [3]. This configuration ensures that packets were 
timestamped as early as possible to minimize the effect 
of processing delays on the timestamp. 

V. EXPERIMENTAL RESULTS 

This section presents the results from a series of exper­
iments designed to determine if the direct offset or the 
composite delay and offset method provides the better 

results. Using the better method, we then conducted a 
series of measurements to determine how closely in time 
the testbed nodes received broadcast packets. 

A. Direct Offset Experiments 

We connected RS-232 cables from TSl to TS2, TS3, 

and TS4. We chose RS-232 cables as they provided a 
direct link between the machines and hence there was 
no cross traffic to impact the measurements. TS2, TS3, 

and TS4 nodes performed message exchange with TSl 

as described in Section III-A. 
Figure 5 presents offset values computed via Equa­

tion (1) between TS2 and TSl over a 10 minute period 
with samples taken once per second. The x-axis shows 
time in seconds and the y-axis shows offset in microsec­
onds. A zero value indicates identical times, non-zero 
values imply that one clock is slower or faster than the 
other one. Ideally, offset should always be zero. 
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Fig. 5. Clock offset between TS2 and T SJ. 
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Figure 5 shows the offset values oscillating between 
-300 µs and 250 µs. Similar behavior was observed for 
other nodes as well. We believe that this large amount 
of variability is due to either to the RS-232 drivers or 
the cards themselves. However, the experiments showed 
that our GPS driven time servers were synchronized with 
sub-millisecond precision. 

B. Composite Delay and Offset Experiments 

a) Delay Measurement: The composite measure­
ment approach described in Section III-B can be used to 
measure delay or offset if one of the values is known. 
In order to eliminate offset and measure delay, we used 
TGl (see Figure 4) to broadcast a CBR UDP flow from 
one interface. Since the packets had a broadcast MAC 
address, the switch replicated them and sent a copy to 
each of the other seven interfaces on TG 1. 

The experiments were performed with and without 
cross traffic. The experiments lasted for three minutes, 



TABLE I 
DELAY MEASUREMENTS WITHOUT CROSS TRAFFIC. 

Rate ethl eth2 eth3 eth4 eth5 
ioth 

5oth 
goth 10th 

5oth 
goth 10th 

5oth 
goth 10th 

5oth 
goth 10th 

5oth 
goth 

I 14 15 18 17 19 22 14 14 15 18 20 23 13 14 15 
10 14 14 18 15 18 22 14 14 15 18 19 22 13 14 14 

100 14 15 19 14 18 20 14 14 15 18 19 21 13 14 15 
500 14 15 19 14 18 20 14 14 15 18 19 21 13 14 14 

TABLE II 
DELAY MEASUREMENT WITH CROSS TRAFFIC. 

Rate ethl eth2 
10th 

5oth 
goth 10th 

5oth 
goth 10th 

I 15 16 22 16 19 22 15 
10 14 15 21 15 18 21 14 

100 14 15 20 14 18 21 14 
500 14 15 20 14 18 21 14 

and we repeated every experiment five times. Finally, 
we used 64-byte sized packets and used the following 
packet rates: 1, 10, 100, and 500 packets per second. 
Cross traffic was generated by sending CBR UDP flows 
from the four interfaces in TG2 to TSJ-4 nodes. The four 
flows send 64, 256, 1200, and 1500-byte packets respec­
tively at 500 packets per second. The delay values were 
calculated by using the Equation 3 with the offset set to 

zero as the broadcast packets originate and terminate on 

TGJ. 
Figure 6 shows TGJ's raw delay data over time for 

two interfaces when cross traffic was not used. The data 
shows little variance with values ranging from 14 µs to 
23 µs. 

If the variance in delay is small, we can treat it as 
a constant and use it to calculate offset values using 
Equation 3. Table I and Table II present the 10th, 5oth, 
and goth delay percentiles with and without cross traffic, 
respectively. The tables only present the values for five 
of the seven interfaces. The other two were not included 
for the sake of brevity; however, their values are similar. 
From these results, we have made two observations. 
First, the difference between the 10th and goth per­
centiles is very small, implying low variance. Second, 
the delay values are very similar with and without cross 
traffic. Although, there were delay values recorded as 
high as 4167 µs in the experiments without cross traffic, 
and 3625 µs in the experiments with cross traffic, these 
values occurred extremely rarely and were most likely 
caused by the operating system or hardware delays. The 
data indicates that our Cisco 3650 experimental switch 
performs broadcast replication very well and we can treat 
delay as a constant. From the data, we compute delay to 
have an 18 µs value. 

The previous experiment has characterized delay. It is 
nearly constant indicating that a wired wireless testbed 
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Fig. 6. Broadcast delay measurements w/o cross traffic. 

can emulate wireless broadcast behavior with a high 
degree of accuracy. This result allows us to proceed with 
our next experiment to measure the residual clock offset. 

b) Offset Measurement: Although the experiment 
shown in Figure 5 demonstrated the sub-millisecond 
precision of our time servers it did little to show Offset 

behavior at sub-millisecond time scales. To investigate 
these effects, we broadcast UDP packets in a CBR flow 
from TSJ to TS2-4. Using Equation 3 and the 18 µs delay 
value calculated previously, we calculate offset value for 
each node pair. Just as before, the experiments lasted 
three minutes and were repeated five times. TSJ was 



configured to send a broadcast flow of 64-byte packets 
with the following packet rates: 1, I 0, I 00, and 500 
packets per second. Cross traffic was generated by TG2 

using the same parameters described previously, except 
that the sink was changed from TS 1-4 to TG 1. 
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Fig. 7. Offset values at 10 packets per second with no cross traffic. 

Figure 7 presents the raw data results from an offset 
experiment without cross traffic, and Figure 8 presents 
the results from the experiment with cross traffic. Both 
graphs are computed from the TS2 node data. The x-axis 
describes the experiment time in seconds and the y-axis 
is for offset values as measured in microseconds. Both 
graphs show offset values well below the + / - 300 µs 
values from the experiment in Section V-A. The slight 
jitter is caused by the variance in delay observed in the 
previous experiment and the slight drift of the clocks. 
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Fig. 8. Offsets at 10 packets per second with cross traffic. 

Over all of the experimental runs, the 10th, 5oth, and 
goth offset percentiles are 7 µs, 18 µs, and 53 µs, 
respectively. The maximum offset that we observed was 
667 µs; however, values larger than 53 µs occurred 
extremely rarely. The data indicates that the nodes are 
synchronized to less than 100 µs of each other, which 
is a much better result than obtained in Section V-A for 
the first method. 

The delay and the offset measurement experiments 
have shown that a wired wireless testbed can emulate 

wireless broadcast behavior with a very high degree of 
accuracy, and that it is possible to achieve very close time 
synchronization by relying on GPS reference signals. 

VI. CONCLUSION 

In this paper, our goal was to determine if wireless 
broadcast behavior can be accurately emulated in a wired 
environment. Specifically, we were interested in deter­
mining if in a wired testbed, a broadcast message will 
be received at nearly the same time by multiple nodes. 
We were interested in identifying validation methods that 
could be used by other wireless researchers to determine 
the accuracy of broadcast emulation in their testbed. For 
this purpose, we constructed a simple GPS-synchronized 
testbed and carried out validation experiments. Our re­
sults indicate that it is possible to emulate broadcast 
behavior with a high degree of accuracy. 

In future work, we plan to investigate the accu­
racy with which a wired wireless testbed can emulate 
the collision avoidance behavior of wireless networks. 
Understanding collision avoidance behavior emulation 
along with the insights gained in this work will provide 
a foundation for building a high-fidelity wired wireless 
emulator. 
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