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As mobile and wireless technologies become more pervasive in our society, people begin to depend on
network connectivity, regardless of their location. Their mobility, however, implies a dynamic topology
where routes to a destination cannot always be guaranteed. The intermittent connectivity that results
from this lack of end-to-end connection is a dominant problem that leads to user frustration. Existing
research to provide the mobile user with a facade of constant connectivity generally presents mecha-
nisms to handle disconnections when they occur. In contrast, the system we propose in this paper pro-
vides ways to handle disconnections before they occur. We present a Data Bundling System for
Intermittent Connections (DBS-IC) comprised of a Stationary Agent (SA) and a Mobile Agent (MA). The SA
pro-actively gathers data the user has previously specified, and opportunistically sends this data to the
MA. The SA groups the user-requested data into one or more data bundles, which are then incrementally
delivered to the MA during short periods of connectivity. We fully implement DBS-IC and evaluate its
performance via live tests under varying network conditions. Results show that our system decreases

Keywords:

Delay Tolerant Networks
Mobile networks
Intermittent connectivity

data retrieval time by a factor of two in the average case and by a factor of 20 in the best case.
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1. Introduction

As the Internet spreads throughout the world, demand for con-
stant connectivity, regardless of location, is rising. The response to
this demand has been the development of mobile applications and
devices that can be used by in-motion users. However, as users
move between connection points, they experience bursts of net-
work connectivity interspersed with either weak or non-existent
signals. A recent study finds that mobile devices can move at
speeds of 75 mph and still experience periods of connectivity with
high throughput and low loss [8]. However, most, if not all, current
applications are not designed to take advantage of these short
network connectivity bursts. An insufficient amount of data is
exchanged before a disconnection occurs, and often must be
re-gathered the next time a connection is present. Alternative, con-
tinuous Internet connections that are available, through current
cell networks, for example, are either relatively expensive or slow,
but are improving at a rapid pace. The intermittent connectivity in
such scenarios leads to large latencies, user frustration, and possi-
bly even complete application failure.

This user frustration is more fully appreciated in an example
scenario. A mobile user takes a bus or a train to work every morn-
ing. This user tries to connect to available access points along her
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commute. The user opens a web browser and connects to http://
www.cnn.com to read the morning news. She reads the blurb for
the main story and clicks the link to read the full text. By this time,
however, the bus has moved past the AP’s signal range and the user
receives a “Page Not Found” error. Although the user’s laptop was
likely connected long enough to receive a significant amount of
data, part of this time expired before the user realized a connection
existed, and more time was wasted as she read the main story’s
blurb. A system that quickly reacts to the acquisition of a signal,
and utilizes the full connection period, would greatly enhance
the user’s experience in this case. If the system knows that the user
enjoys reading the morning news on her way to work, it can pro-
actively gather this data in the background whenever a connection
is available. The full text of the main news story will then be wait-
ing for the user when she wants to read it.

The intermittent connectivity that is the focus of the scenario
above has been previously studied in various ways. Specifically,
Delay Tolerant Networks (DTNs) and intermittent, or disconnected
networks are research areas that address cases where an end-to-
end connection does not exist [1,5,12,6]. With the generality of
DTNs, and their focus on routing, many researchers have developed
solutions that hide the interruptions of intermittent connectivity.
The majority of these proposed solutions focus on reacting intelli-
gently to disconnections after a request has been made [2,15,19].
Possible reactions include either caching requests [4,14,18] or
maintaining high-level connections [17,20]. In all of these solu-
tions, requests made during times of disconnection wait to be
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serviced until connectivity returns. In addition, the mobile devices
in these solutions are required to open separate connections to
each application server the user wishes to contact. The system
we present in this paper avoids both of these drawbacks.

We present and develop DBS-IC, a Data Bundling System for
Intermittent Connectivity that takes advantage of short connection
periods to enhance the experience of mobile users. A Stationary
Agent (SA), located on a stationary device with a stable connection,
collects data the user has specified will be needed in the future.
This data can be heterogeneous: data from web servers, email serv-
ers, and other file servers. The SA then groups this data together
into a single package, or bundle. Afterwards, the SA opportunisti-
cally sends this bundle to a Mobile Agent (MA), residing on a mo-
bile device, whenever a connection is present. Once the bundle is
successfully transferred to the MA, the user can view the data at
any time, including times of disconnection. In this way, our system
also hides the underlying instability of the connection, but unlike
other systems, creates greater opportunities for users to be active
during periods of disconnectivity.

DBS-IC efficiently utilizes available bandwidth using a combina-
tion of multiple techniques. First, our system forms a single con-
nection between the MA and SA to send heterogeneous data,
thereby eliminating application-specific connection and request
times. In the scenario above, the user may want to check her email
after reading the morning news. DBS-IC, therefore, sends the user’s
emails in the same bundle as the web data from CNN, relieving the
user of the need to contact these servers separately. Second, after
the first copy of a data bundle have been sent to the MA, DBS-IC
bundles and sends only data updates in an effort to eliminate
unnecessary re-transmissions. Referring to our scenario, after the
email and web data has been sent to the user, only new emails
and updated web content will be sent in the future.

With respect to bundling, we discuss various bundling schemes
and address the transfer latency and data staleness that can arise
from overly large bundles. For example, if the user’s laptop is expe-
riencing extremely short connections, the data may be out-of-date
when the transfer finally completes. To counteract these problems,
we introduce mini-bundles to expedite the transfer of data that is
immediately viewable by the user and to keep data current. In-
stead of sending the user’s email and the large amount of CNN
web data all at once, we can send a chunk at a time so that the data
is incrementally available. We examine different approaches for
creating these mini-bundles, including data type, size, and priority.

We fully implement DBS-IC in order to evaluate its perfor-
mance. We choose to implement DBS-IC, rather than simulate
the system, in an attempt to obtain more realistic results under
unpredictable wireless network conditions. We evaluate the per-
formance of our implemented system in different intermittent con-
nectivity scenarios, and compare the results to existing data
retrieval methods. Results of live tests are excellent, showing that
DBS-IC efficiently utilizes bandwidth to opportunistically deliver
data to the user before disconnections occur. We find that mini-
bundles further enhance our system, delivering viewable data to
the mobile user significantly faster than traditional retrieval proto-
cols such as the Hyper Text Transfer Protocol (HTTP).

The work presented in this paper is a significant extension of
our previous work on DBS-IC [11]. This extension leads to a greater
understanding of how the system actually works, where patches
and modifications can be introduced to provide a more scalable
system. There are three major additions in this paper. First, we re-
fine the system architecture and operation to be more robust, and
describe related algorithms in greater detail. Second, we present a
more extensive set of evaluations to better assess the performance
of our system. Third, we introduce and evaluate the idea of a sim-
ple adaptive predictor that dynamically determines mini-bundle
sizes that should be delivered to the mobile agent. We show in

our evaluation how this predictor helps the system increase the
amount of viewable data at the end user, therefore, improving a
user’s experience.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the components and
operation of DBS-IC. Section 4 outlines our evaluation techniques
and presents our results. Section 5 contains our concluding
remarks.

2. Related work

In this section, we discuss related work, both in the general field
of wireless networks and in more specific efforts to combat inter-
mittent connectivity. We begin with a brief discussion of MANETs
and progress into the area of disconnected and delay tolerant net-
works. We then examine two existing approaches to handle inter-
mittent connectivity and we discuss how these approaches differ
from our system.

A large focus of mobile research is on Mobile Ad hoc NETworks
(MANETs), which consist of mobile wireless nodes, each acting as
an end-point and a router. A main thrust in MANETSs has been on
routing [13,22-24]. However, since MANETs assume an end-to-
end connection between the nodes in a network, this assumption
immediately distinguishes the work in this area from our work
on intermittent connectivity resulting from disconnected
networks.

Other areas of research, such as disconnected mobile networks
[16,26] and Delay Tolerant Networks (DTNs) [1,5], address net-
works where end-to-end connectivity cannot be assumed to exist.
While our system focuses on delivering bundled data from a wired
stationary device to a mobile node, the same bundling and oppor-
tunistic delivery concepts are applied in DTNs. However, existing
research in DTNs mostly focuses on forwarding techniques [10,9],
routing algorithms [12], and transport layer issues [7], which our
system is not concerned with. In such challenged networks, where
intermittent connectivity and variable delays are a dominant fac-
tor, a system like ours helps take advantage of every successfully
routed message.

In the more specific area of intermittent connectivity, two main
methods exist to counteract the detrimental effects of disconnec-
tions. The first approach involves maintaining session-level con-
nections through disconnections [2,3]. Ott and Kutscher first
examine the feasibility of mobile network traffic for in-motion
users [19]. They introduce their Drive-thru Internet Architecture
and examine a Connectivity-Loss Resilient Connection (CLRC) be-
tween a mobile client and a fixed proxy that maintains information
regarding multiple TCP streams [20]. By maintaining the CLRC and
splitting the connection at a proxy, transport-level connections re-
main open through disconnections. Mao et al. present a similar ap-
proach, maintaining session-level connections through
disconnections [17]. The goal here is to allow the user to seam-
lessly resume applications upon return of connectivity. Compara-
bly, Kulkarni et al. discuss methods to keep an unreliably
connected mobile client synchronized with rapidly changing web
page content [15]. Their solution uses a proxy that sits between
the client and server, and caches requests during times of
disconnection.

The second approach to intermittent connectivity does not try
to maintain high-level connections, but simply delays delivery of
data while the mobile device is disconnected. This approach in-
cludes solutions such as middleware to ‘store-and-forward’ client
requests during times of disconnection or weak signal [14] and
to synchronize data once connectivity returns [18]. Similarly,
Chang et al. present an ARTour Express program which stores re-
quests internally so the user can seek multiple pages without
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waiting for each to completely load [4]. In the Message Ferrying
scheme, special nodes called ferries are used to forward messages
between disconnected nodes [28,27].

These two approaches to intermittent connectivity differ from
our system in the way they transfer data to the mobile device.
The proxy servers in these implementations do not anticipate what
data the user will need in the future, and react to disconnections as
they occur. In contrast, we expand upon existing methods of pre-
fetching in wired networks [21] to mask retrieval time of network
data by pro-actively collecting and sending the data to the mobile
device before it is needed. Furthermore, in these solutions, the mo-
bile client must create a new transport-level connection each time
the user requests a new piece of data. Our system avoids these
multiple connections by bundling the requested data and sending
this bundle over one connection set up between the Stationary
Agent (SA) and the Mobile Agent (MA). Most importantly, neither
of the above methods allow the user to view new data during times
of disconnections, leading to an uneven user experience.

3. System architecture

In this section, we present an overview of our Data Bundling
System for Intermittent Connectivity (DBS-IC) and its associated
protocol, the Mobile Pro-active Transport Protocol (MPTP). We first
explain the major components and overall operation of our system.
We continue with a discussion of several critical issues such as
authentication, bundling, and handling data updates. Next, we
introduce mini-bundles, and show different methods by which
they can be constructed. We also discuss the predictor component
in our system, which dynamically determines an appropriate mini-
bundle size that should be delivered. Finally, we conclude this sec-
tion with a discussion of additional design considerations.

3.1. System components and operation

There are two major components that comprise our Data Bun-
dling System for Intermittent Connections (DBS-IC). These compo-
nents are a Stationary Agent (SA) and a Mobile Agent (MA). The SA
is located on a stationary device that has a stable connection to the
Internet, such as a user’s desktop computer. The SA gathers various
forms of data from different sources, such as web, email, and file
servers. The MA is located on an in-motion mobile device which
moves between wireless Access Points (APs) or mesh routers and
therefore experiences intermittent connectivity. A Mobile Pro-ac-
tive Transfer Protocol (MPTP) connection is created between the
SA and MA whenever the MA enters connectivity range. We cre-
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ated MPTP to help provide authentication, lower connection over-
head, and provide more bandwidth for data transfers. In general,
MPTP borrows from the spirit of the bundling protocol specifica-
tion in the sense that data from different applications are bundled
together at the application layer [25]. However, we do not perform
any protocol translation since we are operating over the same
internet. Details of MPTP is more of an implementation issue and
is not included due to space limitation, but can be provided upon
request.

The DBS-IC architecture and a basic operation scenario are pre-
sented in Fig. 1. Operation begins with an initial configuration step
in which the user interacts with the SA, specifying web, email, and
file servers from which the agent should gather data (Step 1). The
SA then contacts the specified application servers and gathers the
user-requested data (Step 2). This step is periodically repeated,
based on a user-configurable update frequency, to keep the data
current. After gathering all the requested data, the SA then bundles
these pages, emails, and files into a single group. The SA is then
ready to send this bundle to the MA as soon as the SA is contacted
(Step 3). An alternative to bundling all the data into one large bun-
dle, called mini-bundling, can optionally be performed at this point.
With mini-bundling, the gathered data is structured into multiple
smaller bundles, which can each be autonomously sent to the MA
(Step 4). Furthermore, a subcomponent we call the predictor will
determine the best mini-bundle size to use in order to maximize
the amount of viewable data at the MA. The methodology and ben-
efits of mini-bundling and the predictor are discussed later.

The SA is now ready to transmit data to the MA. The MA con-
tacts the SA when it comes within range of an access point. In re-
sponse to this signal, the SA begins to send the data it has
previously gathered and bundled (Step 5). However, in this exam-
ple, the MA moves out of range and loses its connection in the mid-
dle of the transmission (Step 6). We employ heartbeat messages,
sent from the MA to the SA at regular intervals, to help the SA rec-
ognize disconnections. When the MA loses connectivity, its heart-
beat messages no longer reach the MA. As a result, the SA learns
that a disconnection has occurred. The SA stops the transmission
and waits until it is again contacted. When the MA moves back into
connectivity range, it again contacts the SA. The SA then resumes
sending the data from the last byte the MA received (Step 7). Once
the whole bundle is sent, the MA has the opportunity to send con-
figuration file updates. This cycle repeats indefinitely: as long as
the SA is running, updates will be gathered and bundled, waiting
to be sent to the MA.

Since we actually implemented the DBS-IC, the pseudo-code of
our system is shown in Figs. 2-5. We present these figures to give a

T
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Fig. 1. DBS-IC architecture & operation scenario.
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. /f Notation

CF = ConfigFile; X = MA is connected to SA;
HB = heattbeat, MB = mini-bundle;

MBN = MB number,

PATCH = patch updates received from SA;

. CF_update = SA asks for CF updates;

ARG R v

7. /" MA *f /r**rserverlnteraction() thread ***/

8: M set signal interrupts and handlers

9.  Allow signal SIOGTERM to interrupt system call;
10: set handleSignal() to SIGTERM signal handler;
11: while (true) do

12: active open // connect 1o setver,

13: while (I50) de

14. Request Connection,

15: if (first login) then

16: Login (User, Pass);

17: Assign aSessionlD for future login/s,
18: else /f rejoin session with SessionlD

19: CGret size/info on incomplete bundles,
20: Login (SessionID);

21: Get HB information (port from SA);

22: Create thread to manage HB interactions,
23: Get CF from SA if not received yet;

24, while (X) do

25: receive data from SA.

26: if (X when receiving file) then PATCH,;
27 if (CF_update) then send SA updated CF,
28:

29 /% MA ¥ f*¥* main) **¥/
30: start servetinteraction)) // with SA
31: menuOptions() // display menu options

32: View (Webpages || Emails || Files);

33: Update CF

34 Update or Add Webpages,

35: View Configuration File;

36: Delete Line in Configuration File;
37 Done Updating,

38 Exit Client;

Fig. 2. Pseudo-code for server interaction at the Mobile Agent (MA).

clearer picture regarding how all components fit together, and also
to provide a more formal description of how DBS-IC operates. Fig. 2
describes the MA'’s ability to access and set the configuration file,
and shows how its interactions with the server occurs. Since most
of the complexity of DBS-IC is located at the Stationary Agent (SA),
the other three figures represent major components in the SA.
Fig. 3 shows the various parts built for basic interaction with the
client MA. Fig. 4 describes handling client login, and how to either
start or resume a session with any MA. Finally, Fig. 5 shows the
operation of the predictor which dynamically determines the
appropriate mini-bundle size that should be sent. We now talk in
more details about each one of these components.

3.2. Authentication, bundling, and updating

We now discuss in more detail the features of DBS-IC that allow
the system to efficiently utilize short connection periods to trans-
mit data. Recent study findings show that even up to speeds of
75 mph, an intermittently connected mobile device experiences
connection periods with high throughput and low loss [8]. The
two main factors prohibiting meaningful data transfer at these
speeds are (1) lengthy connection and authentication times and
(2) multiple application-required request cycles (such as multiple

d: i Additional notation

2: SIGTERM_R =SIGTERM signal received,
3. data_U = data updated,

4. data_% = data transfer incomplete

5: P 3A ¥ PR clientInteraction() ***/

6: // set signal interrupts and handlers

7: Allow signal SIGTERM to intetrupt system call,
8: Set handledignal() as SIGTERM signal handler;
9: handleLogin() // handles login of MA

10: #/ set-up hearbeat connection

11: open socket to recetve heartbeats from MA;
12: create thread to manage heartbeat interactions,
13: send socket details to MA,;

14: if (M A has not received CF) then

15: S>end CF,

16: while (true) do

17:  if X) then

18: if({data U && dataXfer incomplete) then
19: Send HB to MA in order,

20: else // data has not been updated

21: Send 0 bytes of data;

22:  if(X) then

23: Check if MA has CFU,

24:  if (| X) then

25: Kill thread and wait for X,

26: if (CF updated) then

27 gather data bundles,

28 if (done sending all data) then

29: sleep; // wait for more updates

30: if SIGTERM_R) then

31 exit; /7 kill thread and connection

Fig. 3. Pseudo-code for client interaction in the server agent (SA).

HTTP GET requests). Our system solves both of these problems
by providing a low-overhead authentication scheme, and by bun-
dling data to avoid multiple connections from the mobile device.

In the basic DBS-IC operation scenario, presented above, there
are some important features that solve the two problems discussed
in the preceding study. First, authentication via a username and
password is not needed the second time the MA contacts the SA.
Instead, the MA will use a unique session identifier that the SA as-
signs to it. This simpler authentication technique lowers overhead
and provides the system a larger percentage of connection time de-
voted for actual data transfer. Another important feature of our
system is how it delivers data to the MA. Once the MA receives a
complete copy of an initial bundle, the SA will send only updates
to this data in the future. This technique will save bandwidth
and unnecessary re-transmission of data the MA has already
received.

While the SA continues to gather data updates even when the
MA is disconnected, the SA does not apply these updates to any
of the data that has been partially sent to the MA. The SA instead
sends the MA a complete copy of the data before sending updates,
even if this means sending stale data. Two other possible methods
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1:  /f Additional Notation

2: configSent = configuration file sent to MA from SA,;

3 /< 3A Y P handleLogin) ***/

4 read header sent from MA,

5. if theader— Login(User,Pass) then

6 send initial default Mini BN,

7 Confirm usetname and password,

8. if (header— Login(BessionlD) then

9: send MB number; /#/ could be changed by predictor

10: if (M BN changed by predictor in 3A) then

11: tell client to receive new CF;

12: read header sent by MA; # from Login(Uses,Pass)
13: else

14: tell client to resume normal activity,

15: read headet sent by MA; # from Login(SessionlD)
16: if (header— size of information in header != 0) then
17: read how many bytes received by MA;

12: if (confirm session ID) then

19: if(header— CF receive by MA) then
20: configSent=1;

21: else

22: configBent = 0,

Fig. 4. Pseudo-code handling client logins at the SA.

1: # Additional Notation

2: new M BN = new Mini- Bundle Humber;

3: maxVB = Maximum number of MB;

4: ME_s= Mini-Bundle size; B_s= total bundle size,

50/ SA S %% Predictor- handleBNQ™ ™/
6. B_s=MB_s * MBI,

7. i calevlate next appropriate MB size

3. for (count=1— maxMDB) do

9: MB_s=B_s/count,

10: temp =MB_s % READ;

11: if (temp < best approximation) then

12: best approximation= temp,

13: newMBN = count,

14: if(newMBN |= MEN) then

135: set parameter to inform client of change,
16: BN = newhBN,

17: Configdent = 0;
18: gather data after change in MBN;

Fig. 5. Pseudo-code for the dynamic predictor at the SA.

for handling updates are possible. First, if the MA is not currently
connected, and an update is gathered, the SA could start sending
from the beginning of this updated data when the MA re-estab-
lishes a connection. Second, the SA could update only those pages,
emails, or files that have not yet been sent to the MA. The problem
with the first alternative is that there is a risk the user will never
receive a complete copy of the data, instead receiving only the
beginning of multiple versions of data. This partial data cannot
be unbundled and viewed by the user until all the data has been
received. The second alternative is difficult because the SA does
not know exactly how much information the MA received before

being disconnected. In the current implementation, the SA only
ascertains this information once the MA reconnects and sends a
byte count to the SA. Hence, the SA cannot know exactly what data
can safely be updated.

In addition to the stale data problem discussed above, large
bundles can result in overly long data availability latencies. More
specifically, our system can enter a situation in which there is a sig-
nificant amount of data on the MA that cannot be viewed by the
user. Consider the following scenario. The MA connects to the SA
and receives half, or even 90%, of a large bundle of data before los-
ing connectivity. The MA cannot re-connect to the SA for another
hour. Because it has not received the entire bundle, the user cannot
view any of the data already received. The entire bundle is needed
before it can be unbundled, and, in the case of an update, patched
with the data the MA already has. To solve this problem, we intro-
duce mini-bundles.

3.3. Mini-bundles

Mini-bundles are pieces of the complete data bundle. By divid-
ing the data bundle and transmitting smaller mini-bundles, there
is a higher probability that the MA will receive the entire mini-
bundle before experiencing a disconnection. And receiving the en-
tire mini-bundle, as discussed earlier, is a prerequisite for the MA
to view any data. However, due to the communication overhead
that takes place after data is transferred, there is a chance mini-
bundles could hurt system performance. A balance between the
number of mini-bundles and the size of each bundle is needed.
Mini-bundles can be created based on various criteria, such as
the following:

(1) Application Type: Data of one type is bundled separately from
data of another type. For example, one mini-bundle is com-
posed entirely of email data, another contains only web data,
and a third consists of file data.

(2) Priority: Mini-bundles are created based on user-specified
priority values. One mini-bundle consists of the data of the
highest priority, another of lesser priority, etc.

(3) Size: Regardless of the content of the bundle, the bundled
data is divided into equally sized mini-bundles. This means
that each mini-bundle could contain similar or different
types of data.

When used alone, each of these techniques has benefits and
drawbacks. We employ a merged technique in which mini-bundles
are formed primarily based on size, secondarily on priority, and fi-
nally according to data type. This merged technique delivers the
data the user wants most, while regulating the mini-bundles so
they are approximately the same size. The size equality of mini-
bundles ensures that one greedy mini-bundle does not monopolize
the connection time, thereby defeating the purpose of mini-bun-
dles. Regardless of the method that is used to create them, each
mini-bundle is self-contained. More specifically, a piece of data
that the user wants (for example, a web page or a set of emails
from a single email server) will never be divided between mini-
bundles. Therefore, after the transfer of a mini-bundle is accom-
plished, the user has a complete, viewable subset of the bundled
data.

3.4. The predictor

The predictor component in the DBS-IC takes further advantage
of each period of connection by predicting the expected intervals of
connectivity and, accordingly, determining a more efficient mini-
bundle number and size. As shown in the systems operation sec-
tion, the predictor runs on the SA. When an MA first establishes
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a connection with the SA, the SA will randomly send a mini-bundle
with a default size. Simultaneously, it will keep track of the length
of the connection period with the MA before a disconnection oc-
curred. The next time the MA is connected, the predictor will as-
sume that the MA will remain connected for the time maintained
by the earlier connection period and will send a mini-bundle size
accordingly. The assumption is that if the MA is on a device that
is in a car for example, the car will most likely experience similar
connection periods since its average speed will likely be the same.
The more the MA communicates with the SA, the more the predic-
tor learns and is capable of picking more accurate mini-bundles.

Even though we described the operation of the predictor com-
ponent in Fig. 5, we use Fig. 6 to fully appreciate its impact. Deter-
mining the size of mini-bundles is important for obtaining more
efficient transmissions to have more viewable data during times
of disconnection. Data is only viewable when an entire mini-bun-
dle is received. As shown in the figure, if we were to divide the data
bundle into two mini-bundles, and assume that the user reached
an empty park after the second AP, only half the requested data
can be viewed. If the mini-bundles were divided into three parts,
the user would have two thirds of the data available while sitting
at the park with no connection. Conversely, if we were to have
too many mini-bundles, we will reduce the transfer efficiency of
data due to the communication overhead of many mini-bundles.
The point, however, is that choosing an efficient mini-bundle size
is crucial in maintaining a balance between the pros and cons of
mini-bundles. This observation is better shown in Section 4.2.

We quickly note that another approach we examined for the
predictor was to gather connection availability history and store
it in the MA. The predictor would then receive this information
from the MA, and use historical statistics to give a prediction for fu-
ture connectivity durations. The problem with this approach, how-
ever, is that it uses up precious bandwidth which cuts down the
time that could be better used for data transfer. Also, while history
based prediction may result in more accurate mini-bundle sizes,
the gain compared to our simple approach is negligible.

3.5. Other design considerations

In our current implementation of DBS-IC, all MPTP connections
are built on top of TCP. Because TCP provides reliability and in-or-
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der delivery, MPTP itself is not designed to provide these features.
We justify using TCP with two reasons. First, reliability and in-or-
der delivery are imperative for our system; every packet of a
transmission must be received. We briefly attempted to develop
a system using UDP connections, but without additional services
built into MPTP, UDP fails. As soon as one packet is lost, the sys-
tem breaks. To fix this fragility, we need to add more data
acknowledgments and timeouts, both of which would slow the
system.

Second, we justify our decision to use TCP based on the results
of Gass et al.’s previous study, which finds that TCP bulk data trans-
fer to an in-motion mobile device actually achieves much higher
throughput than UDP [8]. Based on our experience with UDP, and
the estimated overhead of making UDP reliable, all of the MPTP
connections between the MA and SA are built on top of TCP. Possi-
ble future work in this area would be to examine the benefits of
modifying TCP window size on the throughput of our system.
However, we show in the evaluation section that our system still
achieves high throughput without modifying TCP, even when only
short connection periods can be guaranteed.

Another design consideration of DBS-IC is the initial configura-
tion step in which the user specifies the data they want delivered
to their mobile device. Instead of requiring the user to complete
this step, the SA could incorporate a smart gathering agent which
retrieves data based on recent user browsing trends. We chose
not to focus on the smart gathering agent at this stage. Instead,
we focus on bundling and sending data pro-actively to examine
how user experience is affected. Adding a smart agent mainly re-
duces the burden on the user by automating the decision for which
data needs to be gathered. This improvement is left for future
work.

4. System evaluation

In this section, we present the evaluation of DBS-IC. We use our
evaluation to accomplish two main goals. The first goal is to com-
pare the performance of DBS-IC in situations of intermittent con-
nectivity to the performance of traditional retrieval methods. Our
second goal is to examine the impact of various parameters on
the performance of DBS-IC. We discuss the evaluation setup and
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environment, followed by a set of results that fulfill our designated
goals.

4.1. Evaluation setup and environment

We fully implement DBS-IC and test our implementation in var-
ious ways. We chose to implement our system, as opposed to sim-
ulating it, to obtain more realistic results. We perform our tests in
the lab, using the results gathered in previous driving test studies
[8,19] to accurately and realistically choose most of our testing
parameters (Table 1). The SA is located on a lab machine that has
a stable connection to the Internet, with an unloaded 100 Mbps
full-duplex switched Ethernet connection. The MA is located on
an intermittently connected laptop with an 802.11b network card.
We run our tests over the same time of day or night to ensure rel-
atively similar network load. Every point in our graphs is the aver-
age of 10 different runs.

The SA gathers and bundles three types of data in our tests: web
pages, emails, and files. Throughout our evaluation, we examine
different intermittent connectivity models to see how our system
performs under varying mobile situations. Each model is character-
ized by a unique combination of connection and disconnection
durations, as shown in Table 1. Gass et al. [8] show that a mobile
device traveling at 5 mph experiences approximately 100 s of effi-
cient connection time while passing a single access point, dis-
counting the lossy entry and exit phases discussed by Ott and
Kutscher [19]. Similarly, a mobile device experiences about 40 s
of connectivity at 35 mph and 15 s at 75 mph. Using these numbers
as a guide, we recognize the following four intermittent connectiv-
ity models:

1. Downtown Walking Model: This model is characterized by con-
nections of 120 s and disconnections of 20 s. It simulates the
experience of a mobile user walking past access points or mesh
routers in an urban area. We do not focus heavily on this model
since the lengthy connection periods are generally adequate to
gather data using traditional retrieval methods like HTTP and
FTP.

2. Downtown Driving Model: This model is characterized by con-
nections of 40 s and disconnections of 15s. It simulates the
experience of a mobile user driving in slow traffic.

3. Suburb Driving Model: This model is characterized by connec-
tions of 20 s and disconnections of 10 s. It simulates the experi-
ence of a mobile user driving on surface streets without traffic.

4. Highway Driving Model: This model is characterized by connec-
tions of 15 s and disconnections of 30 s. It simulates the experi-
ence of a mobile user driving at 70 mph along a highway that
passes periodic APs.

In addition to the intermittent connectivity model, we also vary
characteristics about the data our system is transmitting through-

Table 1
Evaluation parameters.

Parameter Value range Nominal value
Bundle size (MB) 1-50 20, 30
Connection duration (s) 15-100 20
Disconnection duration (s)  10-30 10
Number of mini-bundles 1 mini-bundle to 10 mini- 3 mini-bundles
bundles

Mini-bundling technique Size, priority, data type, Merged = Merged
Prefetched data (%) 0-100 100
Intermittent connectivity Walking, downtown, suburb, Suburb,

model highway downtown
Round trip time (ms) 2-150 70

out our tests. We define bundle size as the size of the compressed
data that is physically transferred between the SA and the MA. This
bundle is divided into a specific number of mini-bundles, which we
vary from one to 10 to evaluate the improvement mini-bundles
provide in delivery time vs. the trade-off of additional overhead.
These mini-bundles are created based on the mini-bundling tech-
nique, which can be size, priority, data type, or the merged tech-
nique discussed earlier. The time it takes to make data available
at the MA also depends on the percentage of prefetched data, the
amount of data that was gathered by the SA before the MA con-
nects to the SA. In the optimal case, the SA will have gathered
100% of the data before the MA connects, but we find that our sys-
tem still performs well when this is not the case. Finally, we test
our system with different round trip times between the MA and
SA to see how this impacts DBS-IC.
The metrics we use in our evaluation are the following.

User-Perceived Data Delivery Time: This is basically the delivery
time for a given bundle of data. We add the term user-perceived
to focus on the end user’s impression when using the system. In
other words, it is the time between when the user decides to view
a piece of data and when that piece of data is viewable on the MA.

Data Throughput: The amount of data our system transfers be-
tween the SA and MA during connection periods. Our system is built
to maximize this throughput by lowering connection overhead.

Data Staleness: The time difference between the latest version of
a piece of data on the MA and the latest version on the SA. Our sys-
tem hopes to deliver data updates in a way that will minimize data
staleness.

4.2. Results

We divide our results section into several parts. Initially, we
analyze how quickly data becomes available to the mobile user
when using our system as compared to using existing retrieval pro-
tocols. We then take a closer look at the throughput our system
achieves and follow this by testing the performance enhancements
that mini-bundles provide to our system. We then evaluate how
DBS-IC performs using different intermittent connectivity models.
We also discuss the throughput of our system and show the impact
of the round trip time between the SA and MA. Finally, we show
the impact of using the predictor on the performance of DBS-IC.

4.2.1. Data gathering vs. data transfer

As stated earlier, the goal of DBS-IC is to opportunistically pres-
ent the mobile user with data, so disconnections will have a less
adverse effect on viewing data. Currently, protocols such as HTTP,
FTP, and SMTP are used to gather web, file, and email data, respec-
tively. These protocols were not designed with intermittent con-
nectivity in mind; they have long connect, request, and timeout
cycles. And in the case of HTTP, a new TCP connection must be cre-
ated for each page requested from a new site. By gathering this
data on a machine with a stable connection to the Internet, our sys-
tem reduces the data transfer on the mobile device to an opportu-
nistic bulk transfer of bundled data. Only one TCP connection is
created when the mobile device gains connectivity, avoiding the
connection overhead of each individual piece of data.

Our first test compares the time to gather data on the MA using
traditional retrieval methods to the time to both gather the data on
the SA and transfer it to the MA using our system. In both cases, the
MA experiences intermittent connectivity based on the suburb driv-
ing model. We vary the total data size in this test, which means the
compressed bundled data is smaller and varies depending on the
type of data. In an attempt to keep the compressed data consistent,
each bundle consists of 2/3 web data, 1/6 email data, and 1/6 file
data.
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Fig. 7 shows that in all cases, the user-perceived data delivery
time is reduced when our system is used. On average, the time is
reduced by a factor of two. The large gathering times experienced
when the MA uses traditional retrieval methods are caused by two
main factors. First, the MA is experiencing disconnections every
20 s, which slows web data retrieval significantly. When retrieving
web pages on the MA, we set a 10 s timeout value. With this time-
out value, a retrieval or connection is automatically re-tried if a re-
sponse is not heard within 10s. This timeout simulates a user
hitting the refresh button after the page has been trying to load
for 10s. Since the MA is experiencing 10 s disconnections, this
10 s timeout is a lower bound on usefulness. A lower timeout value
will have no beneficial effect on performance since the MA will still
be disconnected when a connection is re-tried.

The second reason for the longer retrieval time on the MA is due
to the fact that the MA is located on a wireless device with an
802.11b network card. It therefore has inherently less bandwidth
and throughput than a wired device. In this test, we add the data
retrieval time on the SA to the transfer time from the SA to the
MA. This combination means that in the worst case, when the SA
has prefetched 0% of the data, our system still performs relatively
well. In many cases, however, the SA will have pro-actively gath-
ered this data, before the MA ever connects to the SA. In this situ-
ation, the user-perceived data delivery time consists only of the
transfer time between the SA and the MA, reducing data availabil-
ity times, on average, by a factor of 12 as compared to traditional
methods.

4.2.2. Mini-bundles

The previous test helps show that our system delivers data the
user wants faster than if the mobile user gathers it themselves
using HTTP or similar existing retrieval protocols. However, if the
user is gathering data, such as web pages, each page will be view-
able as soon as it loads. While the user will not have the complete
data for a while, they will have part of the data to keep them occu-
pied. We now empirically examine the speedup in user-perceived
data delivery time that our system obtains by utilizing mini-
bundles.

We first test mini-bundles by holding connection duration and
bundle size constant, varying the mini-bundle count from 1 to 10.
We again follow the suburb driving model. We note, however, that
tests with the downtown driving model yielded very similar re-
sults. In this test, all mini-bundles are of equal size. More specifi-
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cally, the SA gathers and bundles 20 MB of data, then sends this
20 MB of data to the MA in a varying number of mini-bundles.
The SA first sends the data in one 20 MB mini-bundle, then two
10 MB mini-bundles, and so on.

Fig. 8 shows that as the number of mini-bundles increases, the
total time to receive the full 20 MB of data increases. However, the
advantage of mini-bundles in this case is that the user-perceived
data delivery time of some data decreases. Compared to sending
the data in one large bundle, the user can view half the data in half
the time when using two mini-bundles. A less desirable effect of
mini-bundles is the added overhead in terms of the total delivery
time. There is extra communication costs with each additional
mini-bundle, since the SA must prepare the MA for each mini-bun-
dle it sends, and the MA must acknowledge every mini-bundle it
receives. The MA also has the opportunity to send configuration file
updates between each mini-bundle, in an attempt to keep the data
as up to date as possible. However, although the total data delivery
time does increase, mini-bundles present the mobile user with
viewable data faster than sending the data in one bundle. And
since mini-bundles can be arranged by priority, they are an effi-
cient way to opportunistically deliver to the user their most impor-
tant data more quickly.

4.2.3. Intermittent connectivity model

We next evaluate the performance of mini-bundles when our
system experiences different connection durations. To compare
mini-bundle overhead, we only look at total data transfer times
in this test; we do not take into account the partial data delivery
improvements provided by mini-bundles. We also hold disconnec-
tion time constant at 10 s in order to isolate the effect that different
connection durations have on our system.

In the previous test, we saw that using additional mini-bundles
resulted in a longer overall data transfer time. We observed that
this time increase was due to the fact that the extra processing
costs associated with more mini-bundles consumed a portion of
the short connection periods available. In Fig. 9, we see that the
same pattern holds, regardless of the connection duration. Each
additional mini-bundle adds some processing overhead, increasing
the user-perceived data delivery time for the whole data in all sit-
uations. Therefore, mini-bundles should only be used when some
part of the data is more crucial to the mobile user than other parts.
If the user needs to receive the entire data together, using only one
bundle remains an efficient choice.
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Fig. 8. Effect of mini-bundle quantity on data availability.

While holding disconnection periods constant in the above test
is a nice way of isolating the effect of connection duration, it is not
realistic. Fig. 10 plots the user-perceived data delivery time against
bundle size for the downtown walking, downtown driving, suburb
driving, and highway driving models. The trends for all models are
very similar, with the highway driving model having the largest
user-perceived data delivery time due to its short connection and
long disconnection periods. The long disconnection periods in this
model also lead to the highest levels of data staleness. However,
with such short connections, traditional retrieval methods will suf-
fer worse than our system suffers, making DBS-IC a viable solution
in all intermittent connectivity models.

4.2.4. Data throughput

We have so far only vaguely examined data throughput be-
tween the SA and the MA. The transfer bandwidth that our system
achieves warrants further examination. Therefore, we next exam-
ine the instantaneous throughput our system obtains while expe-
riencing 15, 30, and 45 s connection periods. In this test, we hold
bundle size constant at 30 MB and disconnection duration constant
at 10 s. With no disconnections, our system transfers this 30 MB of
compressed data in 59s. We therefore do not examine the
throughput obtained in situations where the MA experiences con-
nection periods of greater than 45 s, since no disconnection would
occur during data transfer. In these cases, our system remains ben-

eficial if the 30 MB of compressed data can be transferred during a
period of connectivity while the larger, uncompressed data cannot.

In Fig. 11, we see that our system achieves instantaneous
throughput of up to 5.24 Mbps. As expected, the throughput
drops to 0 when a disconnection occurs. We can further see that
the longer the connection period, the less time it takes to trans-
fer the 30 MB of data to the MA. Our system delivers the data to
the MA in 82s when the MA experiences 15 s connections; in
60s with 30s connections; and in 58 s with 45 s connections.
Even in the worst case of 15s connection periods, simulating a
mobile device moving at 70 mph, our system averages a
throughput of 2.92 Mbps. This throughput is the average over
the entire data transfer, which includes two periods of discon-
nection. When discounting the disconnection periods, the
throughput increases to an average of 4.14 Mbps. As a compari-
son, the MA needed 535 s to gather 30 MB of web, file, and email
data in Fig. 7, resulting in an average throughput of 0.45 Mbps.
By reducing the data transmission to a transfer of bundled data,
our system achieves significantly more throughput than tradi-
tional retrieval protocols. This increased opportunistic data
throughput means the mobile user will have viewable data fas-
ter, and that this data will remain viewable even during
disconnections.

4.2.5. Prefetched data

In the above set of tests, with the exception of the first, we
assumed that the data the user wishes to view has been com-
pletely prefetched at the SA. Therefore, we have been consider-
ing the transfer of the bundled data as the only factor keeping
the mobile user from viewing it. However, there will be added
overhead if the data has not been completely prefetched before
the user wishes to view it. Fig. 7 showed that even when 0%
of the data has been prefetched, our system transfers all the data
to the mobile user faster than the user could gather it using tra-
ditional techniques. Our system will experience this case of 0%
prefetched data when the user modifies the configuration file
on the MA. After this change is made, the MA will send the up-
dated configuration file to the SA, the SA will immediately gath-
er and bundle any newly requested data, and send the bundled
data back to the MA. Since our system performs well in this ex-
treme case, we can easily modify Fig. 7 for different percentages
of prefetched data, and to see that our system performs well in
all cases.
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4.2.6. Round Trip Time (RTT)

The previous tests have been performed with an RTT between
40 ms and about 70 ms. This number is based on the assumption
that the stationary agent can be placed on a server account that
may be located in another state, or country. Contrary to the nom-
inal value of RTT that we have been using, Fig. 12 shows the time to
receive 20 MB data bundle using the downtown driving model,
with an average round trip time of 3 ms.

In this experiment, the client or MA was placed within the same
AS network as the SA. The round trip time was kept measured be-
tween 2 and 4 ms. The round trip time is almost negligible. The
interesting message we receive from Fig. 12 is that by almost elim-
inating the factor of RTT, the linear increase between the number
of mini-bundles and the time to receive each of them no longer
holds. In other words, we lose the disadvantage of mini-bundles
(takes longer to deliver the overall data bundle), while keeping
its advantage (the ability to view more pieces of the data during
disconnection times). The time to receive the bundles is almost
constant regardless of how many mini-bundles the bundle is di-
vided into. Therefore, in such scenarios, in order to improve the
transmission of data that is immediately viewable to the user,
we can divide the bundle into more mini-bundles.

Therefore, in smaller RTTs, we would worry less about the
trade-off that the additional number of mini-bundles could bring
in terms of the increase in transfer time. A system that is sensitive

to the change in RTT would certainly be an interesting enhance-
ment for future versions of DBS-IC.

4.2.7. Impact of the predictor

We had discussed the predictor component residing on SA in
our architecture section. All our tests however, up to this point,
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have had this component disabled. The reason behind this decision
is that we wanted to isolate the impact of various parts of our sys-
tem, in order to understand the impact of each part. We finally
come to the point where we discuss the impact of the predictor.

The main goal of the predictor component is to dynamically
pick a more suitable mini-bundle size based on the connectivity
duration of the MA. This goal should ultimately enable the user
to view more data during times of disconnections when compared
to DBS-IC without the predictor.

In this evaluation we applied our nominal values for the various
parameters, and ran our experiments with and without the predic-
tor. The initial number of mini-bundles was set to a default value of
5 and the MA was running in a remote location. The round trip
time was kept constant at 68 ms, as well as the bundle size at
20 MB, the situation where 100% of the data is prefetched, using
the suburb driving model. Initially in his test, the SA gathers and
bundles 20 MB of data and sends them to the MA divided among
the default value of five mini-bundles each of size 4 MB.

Fig. 13 represents the values that were obtained from this test.
We measure the amount of viewable data at the MA during a
disconnection slot. The reason we use disconnection slots in the
X-axis, is that we believe that disconnection durations are less
predictable than connectivity duration. If a user is disconnected
there could be a traffic jam, a long traffic light, or the user is simply
sitting in an area with no access points. However, once the user
moves, his speed is usually predictable (based on his location
and method of mobility). When this user passes by an access point,
it is easier to predict the worst case scenario of duration of
connectivity.

Returning to Fig. 13, we observe that in the case of the DBS-IC
with the predictor enabled, the entire bundle is received by the
fourth disconnection slot. On the other hand, in the case of the
DBS-IC with the predictor disabled, the entire bundle is received
after the seventh disconnection slot. The other interesting aspect
is that when the predictor is enabled, there is more viewable data
ready for the user during most disconnection slots. We usually
have double, or sometimes triple the amount of data available be-
cause the predictor was able to dynamically determine a more
appropriate mini-bundle size to send to the MA. Overall, the results
here reinforce the vision set by the predictor in Fig. 6.

5. Conclusions

In this paper we have presented a Data Bundling System for
Intermittent Connections (DBS-IC), a system which deals with

intermittent connectivity by pro-actively delivering data to the
mobile user. DBS-IC is comprised of a Stationary Agent (SA), lo-
cated on a machine with a stable connection to the Internet, and
a Mobile Agent (MA), located on an intermittently connected mo-
bile device. By confining the gathering of web, email, and file data
to the SA, DBS-IC reduces the data transfer on the mobile device to
a bulk TCP data transfer, which allows our system to utilize avail-
able bandwidth extremely well. We find that our system can make
data available to the mobile user up to 20 times faster than if the
data were gathered on the mobile device itself, even when the mo-
bile device is only experiencing connection periods of 20s at a
time. This number could double when the predictor component
in DBS-IC is enabled.

Even though current technologies and research offer alternative
end-to-end connections on small mobile devices, the current trend
is that these connections are expensive, and do not provide suffi-
ciently high bandwidth. Our system takes advantage of the explo-
sive deployment of access points where it can take advantage of
any open access point that might be available.

We believe that DBS-IC is a solid step to improve mobile users’
experience in the face of intermittent connectivity. However, there
are several areas for future work. A valuable future improvement
to our system would be the addition of an intelligent gathering
and bundling agent. This agent would be located on the SA and
would use past viewing trends to dynamically decide which data
the user might need in the future. Our system could further be ex-
tended to handle interactive data, caching user requests during
times of disconnection. This extension would be especially useful
with interactive web pages that require user input, and with newly
composed emails that the user wishes to send. Built on top of our
work, these improvements would help make the in-motion mobile
user’s experience almost equal to that of a stationary user’s.
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