Pixie: A Jukebox Architecture to Support Efficient
Peer Content Exchange

Sami Rollins
Department of Computer Science
University of California
Santa Barbara, CA 93106-5110

srollins@cs.ucsbh.edu

ABSTRACT

Peer-to-peer (P2P) content exchange has recently gained at-
tention from both the research and industrial communities.
The dynamic nature of peer networks and the resource con-
straints of peer hosts have introduced a host of unique tech-
nical challenges that must be addressed to make large-scale
P2P content exchange applications viable. In this work,
we present and evaluate Pixie, an architecture that inte-
grates one-to-many distribution of content and peer net-
works. Pixie provides a valuable data location service as well
as a number of scalability properties both in terms of data
location and content distribution. Our results indicate that,
using a one-to-many scheme, we can significantly reduce the
resources consumed in searching for and distributing con-
tent across peer networks. These scalability properties will
become increasingly important as peer content exchange is
extended to support more advanced applications.

1. INTRODUCTION

Peer-to-peer (P2P) content exchange has recently gained
attention from both the research and industrial communi-
ties. Systems like Napster and Gnutella launched P2P into
the spot light while systems like Chord and CAN have gone
a step further in terms of supporting reliable and efficient
content exchange. The range of applications that fall into
the P2P space has exploded. From distributed computation
to distributed file storage, any application that supports co-
operation between end hosts is often considered P2P. How-
ever, as P2P becomes recognized as more than just the latest
buzzword, there is a call to identify and solve the technical
challenges that are faced in P2P environments. The dy-
namic nature of peer networks and the resource constraints
of peer hosts have introduced a number of unique technical
problems.

In this work, we present and evaluate Pixie, an architec-
ture that integrates one-to-many distribution of content and
peer networks. In Pixie, peers join the network and retrieve

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Kevin C. Almeroth
Department of Computer Science
University of California
Santa Barbara, CA 93106-5110

almeroth@cs.ucsb.edu

a schedule of content to be distributed. Peers can browse
the schedule and choose to take advantage of an already-
scheduled distribution. Alternatively, a peer can choose to
request that a new distribution be scheduled. When a dis-
tribution is scheduled to begin, the serving peer distributes
the content throughout the network to all interested peers.

In this paper, we evaluate two properties of Pixie. Pixie
differs from traditional P2P in that it provides a new data
location service. Our schedule of files currently being de-
livered, or about to be delivered across the network serves
as a browsable index of content. In addition, this schedule
can reduce searching overhead by up to 59.1%. Next, we
look at the scalability benefit Pixie provides with respect
to content distribution. By aggregating client requests and
using one-to-many, batched content distribution, we greatly
reduce the wait time of clients as well as the use of resources
such as disk space, distribution time, and bandwidth on the
serving peer.

This paper is organized as follows. In Section 2 we define
peer-to-peer and expand on the challenges facing P2P con-
tent exchange. In Section 3 we look at current solutions to
the challenges facing P2P applications. Section 4 presents
our architecture and Sections 5 and 6 evaluate the benefits
of the architecture we propose. We conclude in Section 7.

2. MOTIVATION

In this section, we first look at the current impact of P2P
content exchange and then address some of the limitations
facing P2P networks.

2.1 P2P Content Exchange

P2P encompasses a huge area, from distributed comput-
ing [1] to collaborative applications [2]. Applications such
as classroom educational tools that enable users to com-
municate are often considered P2P regardless of their im-
plementation. Alternatively, tools such as application-layer
multicast [3] that are implemented using a P2P model, yet
support a variety of applications, also fall within the P2P
space. In this work, we focus on P2P content exchange appli-
cations. This includes the tools, protocols, and applications
that support exchange of content between end users.

Napster’s pioneering efforts spawned a number of aca-
demic and industrial projects aimed at developing efficient,
P2P content exchange applications. The primary use of
these applications has been the exchange of MP3 music files.
But, factors such as increased disk space and higher band-
width are enabling exchange of other forms of media such

as digital video. As more peers increasingly send more and
larger files, a number of challenges become apparent.

2.2 Challenges of P2P Content Exchange

As the range of P2P applications increases, P2P content
exchange faces a number of challenges:

e Peer Discovery and Group Management - The
dynamic, ad hoc nature of peer groups makes it diffi-
cult to implement peer discovery and group manage-
ment algorithms. Centralized solutions largely defeat
the purpose of a peer network and can be too restric-
tive if a centralized infrastructure is not available. On
the other hand, distributed solutions generally require
a great deal of overhead in terms of state kept about
other peers and messaging required to maintain that
state.

e Data Location - The distributed nature of peer net-
works makes data location a difficult problem. Having
a centralized index or catalogue of available content
again defeats the purpose of a P2P solution and may
not be possible if no centralized infrastructure exists.
At the other extreme, a fully replicated index wastes
resources at each peer and would be difficult, if not
impossible, to maintain in a dynamic environment.

e Reliable and Efficient Exchange - End-user peers
are inherently resource constrained. Especially when
compared to centrally administered servers, end-user
devices (e.g., desktops, laptops, or PDAs) are re-
stricted with respect to bandwidth, disk space, pro-
cessing power, as well as up-time since peers cannot
be relied upon to remain connected for any specific
length of time. This limitation makes reliable con-
tent exchange more challenging in the P2P environ-
ment. New and innovative schemes must be employed
to provide fast downloads and avoid overloading the
resources of peers that store hot items.

3. RELATED WORK

In this section, we discuss current approaches to solving
the challenges facing P2P content exchange applications.

3.1 Peer Discovery and Group M anagement

Discovery and management of peer groups can be imple-
mented using a centralized solution, a distributed solution,
or a hybrid solution. Centralized solutions such as those
used in Napster, Magi, and Groove are most efficient be-
cause peers need not keep state about other peers. More-
over, peers can locate each other with a single request to
the centralized directory. The problem with this approach
is that it requires a centralized infrastructure. Such an in-
frastructure may not always be available or may introduce
a central point of failure which minimizes the benefit of a
P2P system.

Distributed solutions such as Gnutella, FreeNet [4], Chord
[6], CAN [6], Tapestry [7], and Pastry [8] generally rely on
using a well-known peer to discover the rest of the peer
group. However, the group management protocols employed
by these solutions are distributed. In Gnutella and FreeNet,
a peer keeps track of a constant number of other peers. This

is efficient in terms of the state kept at each peer. The prob-
lem with the approach is that searching the peer network
may be slow.

Chord, CAN, Tapestry, and Pastry represent the second-
generation of P2P protocols. In each of these protocols, the
network is organized such that peers keep track of a loga-
rithmic number of other peers (with respect to the number
of peers in the network). When searching, the protocols can
guarantee, or guarantee with high probability, that the de-
sired item can be located in a logarithmic number of peer
hops.

There has also been some exploration into the tradeoffs
between centralized and distributed solutions [9]. A group of
peers, particularly those using mobile devices, may have in-
termittent access to a centralized infrastructure. Therefore,
it may be beneficial to have the ability to tradeoff between
centralized and distributed solutions based on the currently
available infrastructure.

Peer discovery and group management has so far been a
primary focus of P2P content exchange research. We believe
that the research in this area is promising. Therefore, in this
work, we focus our attention on the following two aspects of
content exchange.

3.2 DatalLocation

Most of the work on supporting data location in peer net-
works has focused on on-demand searches for information.
Systems like Gnutella and Napster, as well as CFS [10],
OceanStore [11], PAST [12], systems built on top of Chord,
Tapestry, and Pastry respectively, allow the user to search
for a particular document. The user must know the name
of the document prior to requesting it and searching is then
performed on-demand. While many of these systems claim
to support file system-like functionality, the infrastructures
do not support file system-like content location. Providing
that kind of support would require the application to keep
track of metadata about each user’s files. Even so, this fa-
cility would not support exchange of content between users.

Users may not always have a target item they wish to
download. Our solution provides users with catalogue of
content that they can browse. The benefits of organizing
content into a browsable catalogue include both a more plea-
surable user experience as well as reducing the bandwidth a
user consumes when searching for information.

3.3 Rédliable and Efficient Content Exchange

In the P2P space, techniques for making content exchange
more reliable and efficient have relied on replicating data
within the network. Most deployed systems such as Napster
and Gnutella rely on the assumption that data are inher-
ently replicated throughout the network. First, the user
selects the best peer from which to download content. If the
download request fails, generally because the other peer is
not reachable, the user must try a different peer.

This model begins to break down when hot data is stored
on only a small number of peers. Especially if the peers
are resource-constrained, they may not be able to support
multiple simultaneous requests from the remainder of the
network. This problem is further exaggerated by the fact
that peer networks are often composed primarily of freerid-
ers [13, 14], peers that are only part of the network long
enough to retrieve content from other peers.

As peer networks grow, and as multimedia content be-
comes larger and consumes more resources such as disk space
and bandwidth, a more efficient scheme for exchanging con-
tent is required. In this work, we focus on the latter two
challenges. Pixie addresses the problem of data location by
providing a browsable catalogue of popular content available
across the network. Moreover, the catalogue caches the loca-
tion of content making data location more resource efficient.
Additionally, we address the challenge of efficient exchange
of content by batching requests for content and servicing
hundreds or thousands of requests simultaneously. From the
client perspective, this greatly reduces the wait time expe-
rienced after issuing a request. From the server perspective,
we greatly reduce the resources required at the serving peer
including disk space, distribution time, and bandwidth.

4. PIXIE SYSTEM DESIGN

To overcome many of the challenges of traditional P2P
content exchange systems, we explore using one-to-many
content distribution in peer networks. In this section, we
discuss the motivation of our work, provide an overview of
Pixie, and discuss the architecture in more detail.

41 TheAlS

Our architecture is inspired by the Active Information
System (AIS) [15], a near-on-demand architecture to sup-
port scalable content delivery. The AIS batches client re-
quests for content and produces a schedule of the content to
be disseminated. When a client tunes in to the system, the
client may choose to receive content already scheduled, or
may choose to schedule a new distribution. The tradeoff in
this case is the time the user must wait to receive content.
Dissemination is done using multicast thus relieving much
of the burden on the network.

The AIS batching paradigm is well-suited for P2P content
exchange. By batching download requests and distributing
content to multiple peers in parallel, we can ease much of
the burden placed on the peer acting as a server as well as
the network. Additionally, the schedule of content to be
distributed acts as a hot list catalogue. Users can consult
the schedule as a means to browse content available in the
network.

Unfortunately, the current design of the AIS is targeted
toward centralized, video-on-demand style applications [16]
and is not well-suited to deployment in a P2P network. All
content is distributed by a centralized, fixed set of servers.
This is certainly not the case in peer networks. Therefore,
we have borrowed the AIS paradigm to create an extended
architecture to support efficient, scalable, P2P content ex-
change.

4.2 PixieOverview

In this work, we introduce Pixie, an architecture to sup-
port one-to-many distribution of content in peer networks.
The first goal of Pixie is to aggregate peer requests to down-
load content and use intelligent, one-to-many delivery (e.g.,
multicast) to enable a large number of peers to take advan-
tage of the same distribution (see Figure 1). The second
goal is to publish a schedule of content to be distributed
to allow users to browse through the most popular subset
of content available across the network. Pixie can be im-
plemented on top of virtually any peer group management
protocol. When a peer joins the network, it requests the

Management

@(o)

Figure 1: Overlapping requests are aggregated at
the serving peer.

schedule. The schedule contains information about content
that will be distributed (e.g., Gone with the Wind), how
the peer is to receive the content (i.e., the IP address of the
multicast group), and when the distribution is scheduled to
begin (e.g., 8pm GST). If a user is not interested in content
already scheduled for distribution, the user may choose to
search for and schedule new content. When a new distri-
bution is scheduled, a scheduleUpdate is propagated to all
peers indicating the name of the content that will be dis-
tributed, how an interested peer can receive the content,
and the scheduled distribution time. At distribution time,
interested peers tune in to the distribution.

Using this model, peers are able to more rapidly and effi-
ciently locate data of interest. The schedule provides a new
service, acting as a browsable hot list of available content
within the network. Assuming that many users are inter-
ested in the same content, it is likely that a user will find
the content he or she is interested in by looking at the sched-
ule, thus easing the burden on the network.

By distributing content using one-to-many distribution,
we provide additional scalability properties as well. Effi-
ciency gains come from reducing the load on peers by aggre-
gating requests and servicing multiple peers simultaneously.
At the scheduled time, the sending peer distributes the infor-
mation using one-to-many distribution. All interested peers
simply tune in and receive the content. While network-layer
multicast is the most efficient distribution mechanism, we
also envision the use of application-layer proxies to reach
peers that may not be multicast capable.

4.3 PixieArchitecture

Figure 2 shows the general architecture of a Pixie peer.
The Pixie components are implemented on top of a group
management layer. We place no restrictions on the group
management protocol. We envision anything from Napster-
style centralized management to Gnutella-style distributed
management to Chord-style distributed management. We
discuss each component in more detail:

ScheduleManager. The ScheduleManager controls ac-
cess to the schedule. The schedule contains information
about which data are scheduled to be distributed, when dis-
tribution will begin, and where the data will be distributed.
It is the equivalent of a TV guide that indicates which pro-
grams will be showing, at what time, and on which channel.
Each peer retrieves a copy of the schedule when joining the
network. Where the copy is found depends on the group
management algorithm employed. In a Napster-style net-

----» multicast
et |y
User
Scheduler Event
‘ContentManager‘ ‘ScheduIeManager‘ Manager

Group Management

LY +

i i

' i

i searchReply updateSchedule searchReply
| search currentSchedule search

v
updateSchedule ntentDistribution getSchedule scheduleNewDistribution

scheduleNewDistribution

Figure 2: Architecture of a Pixie peer.

work, a getSchedule request will be routed to the central-
ized server. In a Gnutella-style network, a getSchedule re-
quest will be routed to a neighboring peer. We consider the
schedule to be best effort in that we do not guarantee the
peer will receive the latest version. However, if a peer re-
ceives a stale version and attempts to search for or schedule
an already-scheduled piece of content, the peer serving the
content will simply respond with an update indicating where
and when the content is already scheduled. The ScheduleM-
anager also receives and applies any updates to the schedule.
Schedule updates contain relevant information about newly
scheduled distributions (i.e., the content to be distributed,
when the distribution will begin, and where the data will be
distributed).

Scheduler. The Scheduler handles the scheduling of con-
tent distribution for a given peer. When the Scheduler re-
ceives a request for new content, it determines when the
peer will have the resources available to fulfill the request.
For example, if a peer can only support two simultaneous
distributions and it is already distributing two streams, the
new distribution must wait at least until one of the distri-
butions has finished. The Scheduler may also apply more
advanced scheduling algorithms such as delaying distribu-
tion in anticipation that more peers will be interested in
the same content in the near future. Once the distribution
has been scheduled, an updateSchedule message is generated
and sent to all peers in the network. The most straightfor-
ward method of distributing the updateSchedule message is
via multicast. However, a broadcast or gossiping scheme
could be used propagate the message.

In a decentralized system, the Scheduler will exist on each
peer and each peer will be responsible for scheduling distri-
bution of its own content. However, a centralized implemen-
tation could also be employed. In a Napster-style system,
a centralized authority would have information about each
peer and could make scheduling decisions based upon that
global information. This could be more efficient in terms
of resource usage, however would require the presence of a
centralized infrastructure.

ContentManager. The ContentManager controls access
to the data stored on each peer. If a peer is not interested in
scheduled content, it can search the network for other con-
tent. Search requests are routed through the network in a
manner consistent with the underlying group management
protocol. For example, using a Napster protocol, search re-

quests would be routed to a centralized server while in a
Gnutella protocol, requests would be routed to neighboring
peers. When a peer receives a search request, it consults its
content base and returns information about content match-
ing the search query.

The ConentManager is also responsible for distribut-
ing content. At the scheduled time, the ContentMan-
ager distributes the content, preferably using multicast.
Application-layer multicast distribution [3] can be employed
for peers without multicast connectivity. Additionally, we
could employ a digital fountain-style scheme [17] both for
efficiency and reliability. In a digital fountain scheme, the
ContentManager distributes data encoded using Tornado
codes. The serving peer continuously distributes until the
client peer has received enough encoded content to recon-
struct the file. An additional benefit of using a digital foun-
tain scheme is that clients with new requests can take ad-
vantage of distributions already in progress. The penalty
incurred is that the serving peer must then continue distri-
bution until the new client has received enough content to
reconstruct the file. Finally, the ContentManager is respon-
sible for receiving and storing content distributed by other
peers.

It is possible that a peer will leave the network even
though it is scheduled to distribute content. On one hand,
we argue that Pixie can be used in environments such as
within an enterprise where machines are more likely to be
well-behaved and remain up. However, in the case that a
machine does go down unexpectedly, we rely on the user to
reissue a request to schedule content for distribution. Using
more robust group management protocols such as Chord,
we could imagine automatically rescheduling distributions
when peers are discovered to be no longer reachable.

UserEventManager. The UserEventManager processes
events from the user and interacts with the user interface.
It initiates searches for content specified by the user, re-
quests new content be scheduled, and receives and displays
search responses. This component is quite flexible and can
be implemented to suit the preferred user interface.

5. EVALUATION OF DATA LOCATION

In this section, we evaluate the benefit of using Pixie for
data location. Unlike other systems, Pixie allows users to
browse an index of the most popular content available within
the peer network. This property provides an enhanced user
experience while incurring minimal overhead. Moreover, our
approach utilizes fewer network resources by eliminating the
requirement that the user must search the entire network for
every piece of content.

5.1 Maetrics

We are interested in three metrics:

1. Found - Found describes the frequency that the user
finds an item of interest in the schedule. This metric
will allow us to conclude how useful the schedule is for
users.

2. Aggregated - Aggregated describes the frequency
that the user is interested in an item in the schedule
and can take advantage of the scheduled distribution.
This metric provides insight into how often multiple
users are serviced by the same stream. We explore
resource savings in more detail in Section 6.

3. Schedule Size - The size of the schedule will help us
to determine the amount of repetition in the schedule
and the manageability of the catalogue.

52 Setup

To evaluate these metrics, we have simulated the schedule
portion of our architecture. When a request is made, we
schedule the request according to the following algorithm:

if the requested item is scheduled
record as FQUND
if the distribution has not started
record as AGGREGATED
else if the distribution has started
schedule at end time of current distribution
else
schedule at current time + 1 minute delay

We assume distribution is done through a basic reliable
one-to-many distribution service such that users can only
join the distribution from the beginning. This service can
be either a network-layer multicast group or can be an
application-layer distribution service. An item remains in
the schedule from the time it is scheduled until it has been
distributed.

This model does not entirely capture two cases: (1) the
case when multiple peers distribute the same content simul-
taneously and (2) the case when scheduling incurs an addi-
tional delay because a peer’s resources are otherwise occu-
pied. Our argument in the first case is that Pixie obviates
the need for multiple peers to distribute content simultane-
ously. No more than two sequential distributions are ever
scheduled, thus the maximum wait time is never more than
the length of a single distribution. Enabling parallel distri-
butions could be achieved by caching, in the schedule, a list
of peers that are capable of distributing a piece of content.
Using this technique, we could also avoid the case that a sin-
gle peer becomes known for distributing a particular piece
of content.

In the case that a peer incurs additional delay before
scheduling an item, we claim that the model we use is, in
fact, the most restrictive for the metrics we consider. Lower
delay means that items remain in the schedule for a shorter
period of time and are less likely to be found or aggregated.
Incurring an additional delay because a peer is distributing
other content or is otherwise busy would only improve our
results.

We generate a trace of requests using a Zipf distribution
[18]. Recent studies have shown this to be typical for current
P2P systems'. For all experiments we use a catalogue of
400,000 items and run the experiment for a simulated period
of 8 hours. To analyze the behavior of the system, we vary
two main parameters:

1. Load - We look at the system behavior under different
load conditions by varying the number of requests per
second made across the network from 20-90. Values are
taken from recent studies of the gnutella network [14,
19] that indicate that a single peer services or routes
roughly 20 requests per second.

2. Peer Characteristics - We look at the behavior of
the system based on different peer characteristics by

1
http://www-2.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

varying the distribution times of the objects. This
provides insight into the system behavior with large
and small files as well as fast and slow connectivity.
Table 1 details the values chosen. Distribution time is
chosen randomly between the minimum and maximum
times.

Min Time (sec) | Max Time (sec) | Description

1 500 Fast Connection
High Variance
10 50 Fast Connection
Low Variance
3800 4300 Mid Connection
10800 21600 Slow Connection
High Variance
15120 16920 Slow Connection
Low Variance
120 180 Typical of
Current Usage

Table 1: Results of varying min/max distribution
time.

5.3 Results

We present the results of three experiments. In the first
experiment, we look at the found and aggregated metrics
with respect to varying the load (number of requests per
second) across the network. In the second experiment, we
vary the peer characteristics in terms of the time to dis-
tribute a single item (the effect of either larger files or peers
with slower connections) and again look at both the found
and aggregated metrics. Finally, we look at the schedule size
metric with respect to a spike in load and varied peer char-
acteristics. We follow with a discussion of the impact of
these results.

Figures 3 and 4 illustrate how the number of found and
aggregated items changes over time for different numbers of
requests per second. For this experiment, we fix the min-
imum and maximum distribution times at 1 and 500 sec-
onds respectively. We observe that the greater the number
of requests per second seen by the network, the greater the
number of both found and aggregated items at each 1 minute
interval. This is not surprising since a greater number of re-
quests will mean that the schedule of distributions is larger
and there is a greater probability of overlap.

We also observe that, in all cases including the case when
the load spikes from 30 to 80 requests per second from
minute 120 to minute 180, the number of found and aggre-
gated items stabilizes quickly and remains stable through-
out the experiment. This property allows us to conclude
that under varying load conditions, the system will remain
stable.

Another interesting observation is that the percentage of
requests that are found and/or aggregated remains relatively
stable throughout the experiment. The percentage of found
items ranges from 54.0% overall in the 20 requests per second
case to 65.1% overall in the 90 requests per second case
and the percentage of aggregated items ranges from 43.5%
overall in the 20 requests per second case to 54.6% overall in
the 90 requests per second case. Thus, we can extrapolate

—— 90 Requests/Second
—e— 40 Requests/Second

—x— 60 Requests/Second
Load spike 30-80 Requests/Second,|

—e— 90 Requests/Second
—e— 40 Requests/Second

—»— 60 Requests/Second
—=— Load spike 30-80 Requests/Second

—=— 20 Requests/Second

4000

£ 3500
£ 3000 thas,
2 2500 |
@ W@WWW*
o 4
£ 2000
;'/1500, etagee paesel, oo o,
glooof 1
3 500 |
w
0
- TN O MO OO NN O T~NO MO O NN 0o
N S N~ 0O 4 M © 0O M WU N~NO N © O <+ M ©
4 4 4 N NN N MmO Mm®OS 3

Time (minutes)

Figure 3: Number of items found over time for
multiple numbers of requests per second.

—e—15120-16920 Seconds —— 10800-21600 Seconds
—x—1-500 Seconds —x—120-180 Seconds

2500 J
'’
]

3800-4300 Seconds
—e— 10-50 Seconds

2000 ——

Found (number of items)

- < O M O O N WY~ MO DN O o
N K o dm©wo mWwNkOoNST © o o ®m o
A Hd A4 A4 d AN NOdO®O 6T TS

~
<

Time (minutes)

Figure 5: Number of items found over time for
various distribution times.

that even under varying load conditions, nearly the same
percentage of requests will be found or aggregated overall.

Our final observation is that the difference between the
number of found and aggregated items is relatively small.
Thus, the case when an already-scheduled item must be
scheduled again is relatively rare. Most requests for the
same content can take advantage of an existing, scheduled
distribution.

Figures 5 and 6 illustrate how the number of found and
aggregated items changes over time for different item distri-
bution times. The item distribution time is the amount of
time it takes to distribute a particular item. The greater the
distribution time, the greater the number of found and ag-
gregated items at each one minute time interval. The reason
for this behavior is that items with longer distribution times
will remain in the schedule longer. Hence, the schedule it-
self will be larger and the probability of finding an item in
the schedule will be higher. Additionally, when items have
longer distribution times, the system takes longer to stabi-
lize. This is because no items are removed from the schedule
until the initially scheduled items finish.

We also observe that faster distribution times result in
fewer found and aggregated items overall. This is simply
because when requests are processed faster, there is less op-
portunity to find a scheduled or executing distribution. Our
results indicate that when downloads occur very quickly (10-
50 seconds), the percentage of items found in the schedule is
48.1% and the percentage aggregated is 35.6%. This is still
a substantial percentage and would still render our system
useful.

20 Requests/Second

4000
3500 -
3000 4
2500 1

Aggregated (number of
items)
N
o
o
o

1
25

49
73
97

MmN~ oL oo
@ o4 ¥ © ©
NN NN

Time (minutes)

121
145
169
313

~N oW M
M © © O M W
[IR RS A A

Figure 4: Number of items aggregated over time
for multiple numbers of requests per second.

—e—15120-16920 Seconds —— 10800-21600 Seconds
—x— 1-500 Seconds —*—120-180 Seconds

3800-4300 Seconds
—e— 10-50 Seconds

N
a
=}
S

Aggregated (number of items)

© o < I~
S m W I~
& & N«

Time (minutes)

47
70
93
116
139
162
185
300

M © 9 N W1 © o
N O om0
M m oo F 3

Figure 6: Number of items aggregated over time
for various distribution times.

Our final observation is that slower connections with low
variance tend to be quite cyclic. This is largely because the
low variance means that all requests initially scheduled are
likely to finish at nearly the same time and new requests
will be scheduled at that time. This behavior is less likely
to occur in a system with varying load, or one in which the
load gradually builds up to a stable point.

Figure 7 illustrates the total size of the schedule and num-
ber of distinct schedule items over time. We fix the number
of requests per second at 40 and introduce a spike in load
from 40 to 90 requests per second from minute 120 to minute
180. For the standard 1-500 second distribution time, the
schedule size stabilizes quickly, recovers quickly from the
load spike, and the size of the schedule is nearly identical to
the number of distinct items. With distribution times from
3800-4300 seconds, we see that the schedule takes almost
an hour to stabilize initially, does not completely stabilize
during the load spike, and is large overall, over 60,000 items
at its most stable point. The 6,000-7,000 item schedule for
1-500 second distributions is quite manageable. However, to
deal with a larger schedule we might have to employ a so-
lution such as caching only the hottest parts of the schedule
and asking for other parts of it on demand. We leave this
question as future work.

5.4 Discussion

Pixie introduces a new model for P2P content exchange.
From a user’s perspective, Pixie means that P2P is no longer
simply pull-based information exchange. Interesting infor-
mation is actually pushed to the end user. Our results show
that, in a moderately loaded system, over 59.1% of search

—— Size - 3800-4300 seconds
Size - 1-500 seconds

—— Distinct items - 3800-4300 seconds
—— Distinct items - 1-500 seconds

120000
100000 F N
80000 / "“l\'-\”\“
60000 | \\\

40000 +

20000 +

Schedule (number of items)

#

0

0L ®m N~ oW o~ o9 10 o
N ¥~ O NS O 4 ¥ © ®©
- o N N N N
T

169
313
337
361
385
409
433
457

ime (minutes)

Figure 7: Total size of schedule and number of dis-
tinct items in schedule.

requests can be satisfied locally. This not only improves
the user experience, it greatly reduces the number of search
messages flowing in the network. However, our approach
does incur some additional penalty. First, since only 48.7%
of queries can be aggregated, roughly 51% of queries will re-
sult in a scheduleUpdate message that must reach all peers
in the network. Fortunately, this penalty is more than offset
by the search savings, especially in a decentralized network
where multiple peers must not only route search requests,
but must process and respond to them as well.

The results we have presented attempt to model today’s
peer networks as accurately as possible. Our results indicate
that the benefit of Pixie is clearly affected by factors such as
the load on the peer network, the size of the files being ex-
changed, and the properties of the connections between the
peers. In addition to providing a new data location service,
we gain efficiency in terms of the number of messages ex-
changed throughout the network. By batching distribution
of content, we also gain efficiency in terms of the resources on
the serving peer. Quantifying serving peer efficiency gains
is the subject of the following section.

6. EVALUATION OF DISTRIBUTION

In this section, we quantify the benefit of aggregating re-
quests and batching content distribution in P2P networks
and compare multiple schemes for scheduling content. Us-
ing Pixie, we can reduce the load on the serving peer as well
as the wait time of the requesting peers.

6.1 Metrics

We are interested in two primary metrics:

1. Wait Time - In order to evaluate the benefit aggrega-
tion provides to the client, or requesting peer, we look
at wait time. Wait time describes the amount of time
the client must wait from the time it requests a piece
of content until the distribution begins.

2. Number Serviced per Distribution - To evaluate
the benefit aggregation provides to the serving peer,
we look at the number of clients satisfied with each
distribution. Using this metric, we can extrapolate on
the resource savings of using an aggregation scheme.

6.2 Setup

To evaluate these metrics, we have simulated a single peer
receiving and servicing requests. Since most peers act in a
similar manner, modeling a single peer will provide us with
adequate information to evaluate the desired metrics. If the
peer receives a request for content that is already scheduled
but has not begun, that request is aggregated and will be
serviced by the already-scheduled distribution. If the re-
quest is for content that is not scheduled or is already being
distributed, the peer schedules a new distribution of the re-
quested content. We compare three scheduling schemes with
respect to our target metrics.

We generate our traces using the parameters outlined in
Section 5. Unless otherwise noted, experiments are run for
480 minutes, item distribution time is between 1 and 500
seconds, 40 requests per second are made across the entire
network, and the serving peer stores one piece of moderately
popular content. Of the 40 requests per second made across
the network, only those requests for the content stored on
the serving peer will be processed. All scheduling is done
first come first served with respect to the requests for con-
tent. We discuss each of the scheduling schemes evaluated
in more detail:

e FCFS - This is the base case, first come, first served,
no aggregation-no delay scheme. Distribution is one-
to-one as is the case is current P2P systems and re-
quests are serviced as soon as they are received.

o AGG-<DELAY> - This is an aggregation-delay
scheme. Multicast distributions of requested content
are scheduled with delay <DELAY >, specified in min-
utes.

o DF-<DELAY>-<MAXDIST> - This is a digi-
tal fountain-delay-mazimum distribution time scheme.
Digital fountain style distributions [17], as described
in Section 4, are scheduled with delay <DELAY> as
in the previous scheme. In addition, since the digital
fountain scheme can cause starvation if requests for
the same content continue to arrive, <MAXDIST> is
a variable that specifies the maximum number of times
a single distribution can be extended.

In addition to varying the scheduling scheme, we vary the
following characteristics to evaluate system behavior:

1. Load - As in Section 5, we look at behavior under
varying load. We look at loads of 40 and 90 requests
per second across the system. Additionally, we look at
the behavior of the system during a spike in load.

2. Peer Characteristics - Also, as in the previous sec-
tion, we look at the system behavior based on peer
characteristics with regard to the distribution time for
each item. In addition, we vary the type of content
stored on the serving peer between popular (many re-
quests made for the content) and unpopular (few re-
quests made for the content).

6.3 Results

We present the results of four experiments. In the first ex-
periment we look at our target metrics in the average case.
The second experiment evaluates variations in terms of load
and peer characteristics by varying the number of requests

per second made across the network as well as the popular-
ity of the content stored on the serving peer. In the third
experiment we take a slightly different look at the wait time
metric while varying the load across the network. Finally,
in the last experiment we look at both metrics with respect
to the peer characteristics by increasing the time required
for distributing a single piece of content.

| ——DF 11 ——AGG 5 —— AGG 1 ——FCFS)]
121
%'100
S 804
o
2 60
S 40 |
3 2 4
£ -
z “ O O O~ O N ¥ M N 4 O O 0N~ © I < ™
M 0N 0 4 < N OM © O N I N O M © O
o 4 4 N N N N OO MM M F F I 0
Wait time (seconds)

Figure 8: Number of requests experiencing each
wait time at 40 requests per second.

AGG 1

Number serviced

Distribution

AGG 5

Number serviced
&3
=

Distribution

Figure 9: Number of requests serviced with each
distribution at 40 requests per second.

Figure 8 plots the number of requests that experience each
given wait time throughout the 480 minute experiment. In
the FCFS case, many requests are made, queued, but not
serviced within the 480 minute window. This is a common
occurrence and illustrates the instability of the system using
a FCFS scheme. Unserviced requests will remain in the
queue of waiting requests at the end of the 480 minutes and
we do not report on them here. We have truncated the FCFS
data for presentation, but what happens in the FCFS case
is that most of the serviced requests are issued in the first
few timesteps. Because they are serviced sequentially, each
request waits from the beginning of the experiment until
the time it is serviced and the time waited increases linearly
for each serviced request. In fact, the final request serviced
waits for 25,487 seconds.

While the FCFS wait times increase linearly, in all ag-
gregation schemes compared, the wait time remains rela-
tively constant. Using aggregation, no request ever waits
for greater than 500 seconds because, in the worst case,
a request will be issued just as a distribution is starting,
hence the request will have to wait the duration of the dis-
tribution. This worst case would be affected if the serv-
ing peer stored more than one piece of content. In the
worst case, a peer storing N pieces of content would sched-
ule them sequentially, 1, 2,...,N. If a request for ! was issued
right after the distribution began, the request would have to
wait Efvz 1 distribution_time; seconds until I was scheduled
again. A peer could potentially distribute multiple pieces of
content simultaneously, but the time to complete each dis-
tribution is still restricted by the peer’s outgoing bandwidth.
Additionally, we suggest that by enabling users to browse a
schedule of content, requests are likely to be influenced by
content already scheduled.

Another observation of Figure 8 is that the spikes at wait
times 0, 61, and 301 indicate that the largest number of
requests wait for the amount of time specified by the delay
of the aggregation scheme. This is because the system is
somewhat lightly loaded and relatively few requests arrive
between the time that a distribution is scheduled and when
it begins. While a longer delay implies a longer average wait
time, the tradeoff is that a longer delay scheme utilizes fewer
resources at the serving peer.

Finally, the difference between straightforward aggrega-
tion and a digital fountain-style aggregation scheme is min-
imal. This is primarily because we delay any new distribu-
tions by 1 minute and because we restrict the number of
times the distribution can be extended to 1. In fact, since
our serving peer in this experiment stores only one piece of
data, in an unrestricted digital fountain scenario we would
achieve 0 wait time for all requests. If a peer was stable,
likely to remain available, and stored only 1 or a few pieces
of popular content, using an unrestricted digital fountain
scheme would be the best choice.

Figure 9 illustrates the number of peers serviced for each
distribution scheduled during the 480 minute run using the
same parameters used for the experiment shown in Figure 8.
We omit the results of the DF 1 1 scheme for presentation
since the results were similar to the AGG 1 scheme. We
also omit the results of FCFS because it always services one
request.

We notice that the aggregation schemes manage to ser-
vice up to 30 requests per distribution. We also notice that
the AGG 5 scheme never services less than 7 requests per
stream while the AGG 1 scheme often services fewer. Be-
cause AGG 5 consistently services more requests than the
lower delay scheme, fewer distributions are required. This
is simply because more requests are aggregated prior to the
beginning of a given distribution. What this implies is that
there is a tradeoff between the resources used at the serv-
ing peer and the wait time experienced by the client. By
incurring an average wait time penalty of 33 seconds with
the AGG 5 scheme, we gain roughly a 25% resource savings
at the serving peer. Our final observation is that by using
aggregation we gain an advantage in terms of disk space re-
quired across the network. For the FCFS scheme to achieve
the same performance of the AGG 5 scheme, content would
have to be replicated up to 30 times throughout the network.

—— AGG 5-40 reg/sec-popular —— AGG 5-90 reg/sec —— AGG 5-40 req/sec

Number of requests

Wait time (seconds

Figure 10: Comparison of the number of requests
experiencing each wait time at 40 and 90 requests
per second.

Figures 10 and 11 illustrate the number of requests ex-
periencing each wait time and the number of requests ser-
viced per distribution respectively for 40 and 90 requests
per second and for the 40 requests per second case when
more popular content is stored at the serving peer. For the
aggregation scheme, increasing the number of requests per
second or the popularity of the content has a similar effect.
Varying these parameters does not increase the worst case
wait time experienced for each request, but rather simply
increases the number of requests that experience each given
wait time. Based on our evaluation technique, the results of
the FCFS case would not change greatly between the 40 and
90 request per second cases, or when the content becomes
more popular, because all requests serviced would be issued
near the beginning of the experiment. What would change
is that the queue of waiting requests would be much larger,
though we do not evaluate this metric here.

Additionally, as more requests are issued we can see a
clearer pattern. There is an even distribution of wait time
from 0 to the amount of delay used in the aggregation
scheme. This is largely because requests arrive at a con-
stant rate and are queued until distribution begins. The
few requests that experience a wait time greater than the
delay are those that arrive while a distribution is in progress
and must wait the delay amount plus the remainder of the
current distribution.

In Figure 11 we observe that the number of requests ser-
viced per distribution becomes much larger when the load
is heavier. Again, increasing the number of requests per
second and increasing the popularity of the stored content
has a similar effect. Over 12,200 requests are satisfied using
and AGG 5 dwarfing the less than 120 requests that can be
satisfied in a FCFS case.

In Figure 12 we store an unpopular piece of content on
the serving peer and demonstrate a spike in load from 40 to
90 requests per second. The figure illustrates the wait time
experienced under these conditions. While wait time with
the FCFS scheme continues to grow, even without the load
spike, wait time using the aggregation scheme remains sta-
ble over all requests. Such behavior is especially important
when a new, popular piece of content is introduced into the
peer network. In the best case FCFS scheme, distributing a
single piece of content throughout the entire network would
be logarithmic with respect to the number of peers. Using
aggregation, the same distribution occurs in constant time.

Figures 13 and 14 illustrate the effect of extending the
amount of time a single distribution takes to complete. This
would be the result of distributing larger files and/or using

—— AGG 5-40 reg/sec-popular —— AGG 5-90 reg/sec —— AGG 5-40 req/sec ‘

250

fanl) b b an DAL an
i 1007WW\AWJVV"VW PR 'V\/ »
g 50

O T T T T T T A A T T T

o © d O Hd O d O Y d O d O d O d©
H 4 N N MM T F 00N o o N~NN~ 00

Distribution

Figure 11: Comparison of the number of requests
serviced with each distribution at 40 and 90 re-
quests per second.

—— FCFS-SPIKE ——FCFS-NOSPIKE

AGG 1-SPIKE —— AGG 1-NOSPIKE
7 8000
g 6000 MJ
(7]
2 4000 F
(4]
2 sl
= 2000
T
B 0 fmm § I

— — o o

» .
inaiigadi f

N Hd H H - ~ o o

- N M < IO © N~ 0 O O «H N M <

- R B B |

Distribution

Figure 12: Wait time for each request serviced with
load surge.

a slower connection. What we notice is that, overall, wait
time for the aggregation schemes increases to be, at most,
nearly the length of the distribution. This is simply because
requests made when a distribution is already in progress
must wait until the distribution finishes. With FCFS, the
behavior is nearly the same as in previous cases with the
maximum wait being nearly the length of the experiment
(480 minutes). Looking at Figure 14, we notice that in the
FCFS case, only a total of 7 requests are serviced while over
150 requests are serviced with each distribution in the other
schemes. The disk space savings Pixie achieves becomes
clearer in this case. Assuming files of 5MBytes, a conserva-
tive estimate for for content such as video, we can achieve a
savings of nearly 1GByte. In a wireless and/or small device
environment where bandwidth and disk space are scarce and
distribution can be lengthy, an aggregation scheme provides
a clear benefit over a straightforward FCFS technique.

7. CONCLUDING REMARKS

In this work, we introduce an architecture to improve data
location and content distribution in peer-to-peer networks.
In Pixie, peer requests for content are aggregated. A sched-
ule of distribution times is propagated throughout the net-
work, and distribution is done using a one-to-many, mul-
ticast scheme. Thus, a virtually limitless number of peers
may take advantage of the same distribution.

This scheme provides two primary benefits over straight-
forward, one-to-one content exchange. First, the schedule
of distributions acts as a browsable index of content avail-
able across the peer network. Unlike current solutions, users
need not know know the name of the content they wish to

——AGG5 ——AGG 1 ——FCFS

o R N WA O

Number of requests

1

256
511
766
1276
1531

© o © <A ©
0 ¥ D 0

N D ©
< & N N N

3571
3826
4081
4336
4591
4846

©
=
V]
<]

1021
3061

Wait time (seconds)

Figure 13: Number of requests experiencing each
wait time for content with 3800-4300 second dis-
tribution time.

download when searching. Further, the push-based schedule
distribution can eliminate search overhead by up to 59.1%.
The second benefit of our scheme is more efficient content
distribution. By aggregating requests and batching distri-
butions, we significantly reduce the wait time a peer expe-
riences and the resources required on the serving peer(s).
Resources include disk space, distribution time, and band-
width.

Peer content exchange is becoming more popular and en-
compasses an increasing number of applications. The con-
tent being exchanged is becoming larger while the peer de-
vices are becoming smaller. One-to-one distribution is these
scenarios is inefficient if not impossible. Moreover, locating
content in larger and more diverse networks is even more of
a challenge. Using Pixie, we can reduce the impact of these
challenges and make content exchange more efficient.

8. REFERENCES

[1] M. Neary, S. Brydon, P. Kmiec, S. Rollins, and
P. Cappello, “Javelin++: Scalability issues in global
computing,” Concurrency: Practice and Ezperience,
vol. 12, pp. 727-753, 2000.

[2] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,

J. Pruyne, B. Richard, S. Rollins, and Z. Xu,

“Peer-to-peer computing,” Tech. Rep. HPL-2002-57,

Hewlett Packard Laboratories, 2002.

S. Zhuang, B. Zhao, A. Joseph, R. Katz, and

J. Kubiatowicz, “Bayeux: An architecture for scalable

and fault-tolerant wide-area data dissemination,” in

NOSSDAYV, (Port Jefferson, NY, USA), June 2001.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. Hong,

“Freenet: A distributed anonymous information

storage and retrieval system,” in Designing Privacy

Enhancing Technologies: International Workshop on

Design Issues in Anonymity and Unobservability,

(Berkeley, CA, USA), July 2000.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and

H. Balakrisnan, “Chord: A scalable peer-to-peer

lookup service for internet applications,” in Sigcomm

2001, (San Diego, CA, USA), Aug. 2001.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,”
in Sigcomm 2001, (San Diego, CA, USA), Aug. 2001.

[7] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry:
An infrastructure for fault-tolerant wide-area location
and routing,” Tech. Rep. UCB/CSD-01-1141, UC
Berkeley.

B

—_

[5

[

| ~—AGG 5 ——AGG 1 —— FCFs|

N
a
=]

200 4 W‘\-

100 A

Number serviced
=
o (42
o O o
!

Distribution

Figure 14: Number of requests serviced with each
distribution for content with 3800-4300 second
distribution time.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems,” in Middeware,
(Heidelberg, Germany), Nov. 2001.

[9] K. Nagaraja, D. Milojicic, and S. Rollins, “Adaptive
infrastructure for mobile ad-hoc communities,” in
submitted to ICPP 02, 2002.

[10] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and
I. Stoica, “Wide-area cooperative storage with CFS,”
in SOSP 2001, (Banff, Canada), Oct. 2001.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“Oceanstore: An architecture for global-scale
persistent storage,” in ASPLOS, (Cambridge, MA,
USA), Nov. 2000.

[12] A. Rowstron and P. Druschel, “Storage management
and caching in PAST, a large-scale, persistent,
peer-to-peer storage utility,” in SOSP 2001, (Canada),
Nov. 2001.

[13] E. Adar and B. Huberman, “Free riding on gnutella,”
First Monday, vol. 5, Oct. 2000.

[14] S. Saroiu, P. Gummadi, and S. Gribble, “A
measurement study of peer-to-peer file sharing
systems,” in MMCN, (San Jose, CA, USA), Jan. 2002.

[15] S. Rollins, R. Chalmers, J. Blanquer, and
K. Almeroth, “The active information system (ais): A
model for developing scalable web services,” in
Internet Multimedia Systems and Applications,
(Kauai, Hawaii, USA), Aug. 2002.

[16] K. Almeroth and M. Ammar, “The interactive
multimedia jukebox (imj): A new paradigm for the
on-demand delivery of audio/video,” in WWW7,
(Brisbane, Australia), Apr. 1998.

[17] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege,
“A digital fountain approach to reliable distribution of
bulk data,” in Sigcomm, (Vancouver, British
Columbia), pp. 5667, Sept. 1998.

[18] G. Zipf, Human Behavior and the Principle of Least
Effort. Reading, MA: Addison-Wesley, 1949.

[19] M. Ripeanu, 1. Foster, and A. Iamnitchi, “Mapping
the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system
design,” IEEE Internet Computing Journal, Special
Issue on Peer-to-Peer Networking, vol. 6, no. 1, 2002.

