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Abstract

Businesses selling multimedia rich software or e-content are growing in the Internet. The e-content can be downloaded or streamed

immediately after an on-line transaction. Since Internet connection speeds are variable, ranging from dial-up access speeds to broadband

speeds, a content provider may provide content at different speeds or levels-of-service. Providers offering content at different service levels

face two major challenges: (1) revenue maximization, and (2) resource provisioning. In this article, we discuss how these challenges are

inter-related, and develop a formal model for pricing and resource provisioning in content delivery systems. We use simulations to study

price and resource utilization dynamics in systems implementing our model. We present simulation results in a variety of scenarios that

illustrate the scalability and robustness of our model.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Available bandwidth and usage have increased in the

Internet. Use of the Internet to purchase goods and services

is also increasing. At the same time, the multimedia

capabilities of computers are improving while remaining

affordable. Together, these trends have spawned services

offering video-on-demand (VoD), downloadable CDs, etc.

In these services, customers should have adequate band-

width to receive content and multimedia-capable compu-

ters to view it. While such services are growing, there

exists great heterogeneity in the resources of users, both in

terms of connection speeds and also in the multimedia

capabilities of their computers. For instance, many users

connect at dial-up speeds, while many others at broadband

speeds. Similarly, some users may be using multimedia

capable, but power-deficient mobile processors, while

others are using the latest desktop based Gigahertz-

machines. This heterogeneity appears to be an inherent

feature of the future Internet. To accommodate such

heterogeneity, a content provider may serve content at

different quality levels. For instance, many web sites offer

streaming content at different quality levels and in different

formats.

Offering content at multiple levels-of-service (LoS) has

many advantages. It offers greater flexibility to users, and

multiple revenue streams to content provider. But there are

two main challenges in a system with multiple LoS: (1) how

do we choose revenue-maximizing prices for content, and

(2) how do we allocate resources among the different LoS so

that we realize the maximum expectation of revenue.

Choosing a revenue-maximizing price depends on a good

understanding of customer behavior. Customer behavior can

vary widely in an Internet-based market. For instance,

geographically dispersed users can access the same web site

at different times during the same day. Such users can differ

significantly in their purchasing behavior. We thus need a

pricing model that is robust to dynamic customer behavior.

Similarly, we need a scalable and robust mechanism to

manage available resources. An important problem in

managing available resources is to be able to quantify it.

For instance, consider a system where resources are

quantified in terms of channels. Consider a system with

100 channels, offering two types of content: A and B.

Suppose that for a stream serving content A, one channel is

allocated, and for a stream serving content B, two channels

are allocated. Then the system can accommodate 100

requests for content A, or 50 requests for content B. The

actual number of requests that the system serves will vary

with the relative fraction of content A versus content B
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requests. Moreover, when there are more requests than the

system can serve, it is difficult to decide which requests to

satisfy. For instance, if it is known that customers are

willing to pay at least $5 for content A and $7 for content B,

accepting A requests will increase the revenue when

resources are constrained. However, since how much

customers are willing to pay is not known, deciding which

requests to serve is difficult.

In this article, we develop a model to address these two

problems. In particular, our focus is on the server and not the

network. Thus, when we talk about allocating bandwidth for

a stream, we refer to bandwidth reservation at the outgoing

link of the server and not along the network-path to the user.

In our earlier work [1], we compared a number of simple

pricing schemes using simulations. These pricing schemes

could be classified as being static or dynamic. In a static

pricing scheme, the price of the content does not change

frequently. In a dynamic pricing scheme, the price may vary

on much smaller time scales based on factors like current

server load, request arrival rate, etc. Based on our

simulations, we believe that there exist fixed prices that

generate very high revenues but finding these prices is non-

trivial. We formulated a dynamic pricing scheme called

HYBRID, which not only generated consistently high

revenues across a range of simulation scenarios and

customer populations, but also reduced the number of

requests rejected due to lack of server resources. In this

article, we primarily focus on extending the HYBRID

pricing scheme to systems with multiple LoS (multi-LoS

systems). We validate our work through simulations.

We now briefly survey related work. Pricing research can

be divided into two parts: (1) connectivity pricing, and (2)

content pricing. Connectivity pricing deals with charging,

accounting, and pricing for usage of network resources.

There is copious literature on connectivity pricing. Stiller

et al. [2], Falkner et al. [3], and DaSilva [4] present excellent

overviews of different concepts in connectivity pricing, and

also evaluate many pricing approaches along different

dimensions. Our work on content pricing differs from

connectivity pricing in that we seek to choose a price for

content as opposed to setting a price for the transport

medium. Our work does borrow some ideas from connec-

tivity pricing, especially the idea of setting a congestion

price when the system is over-loaded.

There has been very little work on pricing on-demand

delivery of content. Content pricing research has mainly

focused on issues like price-wars in multi-agent markets

[5,6], niche-discovery in computational economies [7], and

pricing of information bundles [8,9]. None of these works

consider delivery constraints of content providers. The

presence of delivery constraints, coupled with dynamic

request patterns makes it impossible to apply solutions

presented in these works to on-demand content pricing.

There has also been some work on pricing and scheduling in

Video-on-Demand (VoD) systems from the perspective

of revenue maximization. Basu and Little [10], have

formulated models for VoD and pricing issues related to

them. Wolf et al. [11] study how to maximize profits when

broadcasting digital goods. When resources are constrained,

they schedule the delivery at a later time, and pay a penalty

for late delivery by charging a lower price. They do not

discuss how the prices and penalties are chosen. Chan and

Tobagi [12] design profit maximizing scheduling schemes

for batched delivery of VoD, when the fixed price for the

content is known. Their work does not consider multiple

LoS. Krishnamurthy [13] investigates resource allocation

for VoD based on dynamic pricing. The resources allocated

to a stream are dynamically modified over time based on the

current load. The price varies as a function of the allocated

resources. In this model, customers know the exact price

only after the streaming is complete. This is significantly

different from our approach where the price is known before

the purchase, and resources remain allocated until the end of

streaming.

This work builds on our earlier research for pricing on-

demand delivery of e-content when there is a single LoS

[14–16]. In our earlier work, we have presented an

overview of the on-demand content pricing problem, and

studied the factors that influence revenue [14]. We have

developed deterministic [1], as well as probabilistic

customer behavior models [15,16] in on-demand content

delivery markets with a single product [16] as well as with

multiple products, all sharing the same server resources

[15]. We have also studied revenue maximization in the

presence of smart server management schemes like batching

[1]. In all our earlier work, we assumed that each request

consumes the same amount of server resources. In this work,

we study how the revenue maximization problem is affected

when different requests consume different amounts of server

resources.

The remainder of the paper is organized as follows.

Section 2 describes a formulation for revenue earned in

multi-LoS systems. Section 3 describes our HYBRID

pricing scheme and two other dynamic pricing schemes

adapted from the work by Sairamesh and Kephart [6].

Section 4 discusses the simulation framework and the

experiments we perform. Results are presented in Section 5.

We conclude the paper in Section 6.

2. Revenue model and resource provisioning

We consider a system where requests are satisfied if

resources are available and the customer agrees to pay the

quoted price. We assume that all server resources can be

quantified and mapped to a real number. One approach to

doing this is to consider the bottleneck resource at the server

as the indicator of system resources. For example, if

bandwidth is the bottleneck, then the total available

bandwidth is modelled as the system capacity. For the

purposes of this paper, we shall assume that available

connection bandwidth of the content provider is the measure
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of system resources. When a request is served, some of the

connection bandwidth is allocated to that request.1 Requests

are processed on a First-Come-First-Served basis. If there is

insufficient bandwidth available when a request arrives, then

the request is rejected. In our model, we assume that once

the content provider makes the initial infra-structural

investment, there are either negligible or fixed costs in

maintaining the resources (caches, servers, bandwidth, etc.),

i.e. there are no additional costs based on number of requests

served. This is a reasonable assumption because servers

incur fixed costs and bandwidth can be bought at a flat

monthly rate. If maintenance costs are negligible or fixed,

profit maximization is equivalent to revenue maximization.

We also assume that the market is monopolistic, i.e. there is

no other entity selling the same content. This is a realistic

assumption in many scenarios where the content owner

personally sells the content or has licensed it to a single

distributor.

Table 1 presents the symbols we have used in our

analysis. Consider an arbitrary customer who wants to

purchase content pi;j: We denote his/her decision to

purchase the service by the random variable Yi;j which

can take two values, 1 for accept and 0 for reject. Let

E½Yi;jlci;j� denote the expectation of the decision to

purchase content pi;j when the price is ci;j: The expectation

of revenue per unit time is given by:

R ¼
Xm
i¼1

XL
j¼1

li;jci;jE½Yi;jlci;j� ð1Þ

The revenue function described above does not consider

resource constraints. To model resource constraints, we use

the notion of system utilization. System utilization, r; is

defined as the ratio of the number of requests entering the

system per unit time to the maximum number of serviced

requests exiting the system per unit time. In a stable system,

this ratio must be less than or equal to 1. If there are more

requests than the system can serve, the predicted system

utilization exceeds 1. Therefore, we impose an additional

constraint that the predicted system utilization should be

less than or equal to 1. System utilization is easily defined

when there is a single LoS. If l is the resources consumed by

a request at this LoS, the system utilization can be computed

as shown in Eq. (2):

r ¼
dl

B

Xm
i¼1

liE½Yilci� ð2Þ

However, with multiple LoS, and requests at each LoS

consuming different amount of resources, it is not possible

to quantify the maximum number of serviced requests

exiting the system. We therefore take a different approach.

Suppose that the system resources are partitioned into

kb1; b2;…; bLl; where bj is the resource provisioned for level

j: Then, we can impose the system utilization constraint

independently for each LoS. We solve an independent

constrained maximization problem for each LoS. The total

revenue earned critically depends on how the resources are

partitioned for each level. Notice that resources consumed

by requests for level j will be less than or equal to
Pm

i¼1 ljli;j:

Based on this, we provision resources as follows:

bj ¼

Pm
i¼1ljli;jPL

j¼1

Pm
i¼1ljli;j

ð3Þ

The revenue maximization problem is then given by:

† Maximize:
PL

j¼1 Rj where Rj ¼
Pm

i¼1 li;jci;jE½Yi;jlci;j�

† Subject to:

ci;j $ 0; 1 # i # m; 1 # j # L

rj # 1; 1 # j # L

where

rj ¼
dlj

bj

Xm
i¼1

li;jE½Yi;jlci;j�

As can be observed, the revenue model relies on knowledge

of the request arrival rate and the expectation of the decision

to purchase, given the price. The request arrival rate can be

monitored. However, the expectation of the decision to

purchase is not known. In Section 3 we outline the HYBRID

scheme which estimates the expectation of the decision to

purchase.

3. Dynamic pricing algorithms

In this section, we briefly describe the HYBRID pricing

scheme. The HYBRID algorithm is based on the premise

that customers are rational human beings. We are interested

in the fraction of requests that will result in successful

transactions. For a rational customer population, it can be

argued that this fraction is a non-increasing function of the

quoted price. For a price x; let f ðxÞ denote the fraction of

Table 1

Symbols used

Notation Description

m Number of products

L Number of levels of service

B Total system resources

bj Resources provisioned for jth LoS

lj Resources for serving a request at jth LoS

pi;j ith product at jth LoS

Yi;j Decision to purchase pi;j (0 or 1)

ci;j Price of pi;j

li;j Request arrival rate for pi;j

R Total revenue per unit time

d Mean service time

r System utilization

1 This does not imply that network resources are reserved.
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customers who will accept the price. Let xlow be a price

below which f ðxÞ is exceptionally high, say more than th and

let xhigh be a price above which f ðxÞ is exceptionally low, say

below tl: Then f ðxÞ can be approximated in the domain

½xlow; xhigh� using some non-increasing function. We pro-

pose a family of decreasing functions which depend on a

parameter d described as follows:

f ðxÞ¼

th; 0# x, xlow

ðth 2 tlÞ 12
x2 xlow

xhigh 2 xlow

 !d" #
þ tl; xlow # x# xhigh

tl; x. xhigh

8>>>><
>>>>:

ð4Þ

Fig. 1 illustrates the family of non-increasing functions. By

experimenting with different prices to observe the fraction

of customers who accept the price, and using statistical

methods like least squared errors, one can estimate the

parameter d; and the threshold prices xlow and xhigh: Notice

that f ðxÞ is also the expectation of the decision to purchase,

given price x: Once all the parameters are known, the

content provider can predict the customer behavior and

thereby choose a price2 using the optimization problem

described in Section 2. In HYBRID, the customer reaction is

continuously monitored, and the price is varied at regular

intervals.3 The details of this algorithm are presented in our

earlier work [1].

After performing simulations with the scheme described

above, we observed that while the revenue earned was high,

the number of requests rejected due to lack of resources was

also high. This was mainly because when the algorithm

experimented with low prices, more customers accepted the

service than could be accommodated by the server. We

therefore modified the algorithm as follows. Whenever the

server load increased beyond a certain threshold, an

exponentially increasing price was quoted. Suppose that x

is the fraction of available resources that have been

allocated to satisfy requests. Let L and H be the lowest

price and highest price that the content provider decides to

quote to customers. Then, if x is greater than a threshold, the

price quoted to a customer, irrespective of the content

requested, is given by: ðL 2 1Þ þ ðH 2 L þ 1Þx: This

modified algorithm, generated consistently high revenues

while at the same time minimizing the number of requests

rejected due to lack of resources.

3.1. Other dynamic pricing algorithms

We present two dynamic pricing algorithms adapted

from the work of Sairamesh and Kephart [6]. These

algorithms were observed to converge to the game-theoretic

optimal price in a competitive market in the simulations

performed by Sairamesh and Kephart. We chose these

algorithms for the purposes of evaluation and comparison

with our algorithm. Though many other algorithms were

presented in their work, the market assumptions for the

other algorithms did not match the market scenario of our

work. For instance, we assume a monopolistic market and

that there are constraints on the distribution resources. Their

work was for a competitive market with no constraints on

the delivery mechanism.

Let L and H be the lowest and highest prices,

respectively, that the content provider decides to quote. In

the Trial-and-Error-Pricing (TEP) algorithm, an initial price

is chosen at random in the range ½L;H�: At regular intervals,

with a small probability (called small jump probability) a

random price increment is chosen from a standard normal

distribution having very small s: After the price change,

revenue earned in the next interval is monitored. If revenue

earned per request is lower than before, the old price is

restored. In addition, with a very small probability (called

big jump probability), a new price is chosen at random. The

big jump probability is much smaller than the small jump

probability.

The Derivative-Following-Pricing (DFP) algorithm is

similar to the TEP algorithm. An initial price in the range

½L;H� is chosen at random. At regular intervals, the price is

varied by a random step size. If in the next interval, revenue

per customer increases, then the next increment is chosen in

the same direction, i.e. price is increased. If, however, the

revenue decreases, then the direction of increment is

reversed, i.e. the price is decreased. At all times, the price

is kept in the range ½L;H�:

4. Simulations

We performed simulations to evaluate our pricing

algorithm. Using simulations for evaluation has two

advantages. First, we can test the robustness and scalability

Fig. 1. Customer model.

2 The price so obtained may not be the global optimum.
3 Temporal price variations are an inherent feature in many commodity

markets.
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of the system by generating artificially high load profiles.

Second, we can test performance under different customer

behavior profiles. This is especially useful because it may be

impossible to create scenarios that stress-test the algorithm

when real customers are involved.

Our simulation implementation was designed to model a

content delivery system. All our simulations are averaged

over five runs with different seed values for the random

number generator. We describe the components of our

simulation below.

4.1. System description

We performed simulations on a hypothetical content

delivery system with a T3 (45 Mbp) outgoing link. We

assumed that there are enough servers to accommodate all

the incoming requests. Therefore, outgoing bandwidth is the

bottleneck resource. In our system, customers could choose

from one of two LoSs: 64 or 256 kbp. We chose request

service times from a uniform distribution between 90 and

110 min. This closely models the typical length of movies in

a VoD system.

4.2. Customer choice of products

For the simulation results presented in this article, we

assume that there are only two products: A and B. A

represents a stream requiring 64 kbp CBR, and B represents

a stream requiring 256 kbp CBR. We chose only two

products so that we can illustrate the dynamics of price,

customer behavior, and system load. Our model is, however,

more general, and can be applied to systems with more

than two products or LoS. We have presented simulation

results for systems with 100 products in some of our earlier

work [17].

4.3. Customer behavior

In our simulations, a customer’s valuation for a product

is a random variable drawn from a probability distribution.

If the price quoted by the content provider is less than this

valuation, the customer accepts the content, otherwise the

customer rejects the content. We assume that the content

provider has no knowledge about the probability distri-

bution. The content provider can only observe how many

customers accept or reject the current quoted price.

Since humans typically think in terms of discrete values,

we chose two discrete probability distributions for model-

ling customer valuations: Uniform, and Zipf. Furthermore,

the valuations were always chosen to be an integer dollar

value. This is because it is intuitive for humans to think of a

round figure instead of a decimal number to represent their

valuation of a product. For the sake of completeness, we

also chose one continuous distribution—Normal. We

ignored negative values drawn from this distribution.

Valuations drawn from this distribution could be decimal

numbers. In real life, customer valuations may not conform

to any of these distributions. But in the absence of real life

data, our objective was to test the robustness of the pricing

algorithms over a range of ‘feasible’ customer behavior

patterns.

In all our simulations, our unit of currency is dimes

(10 dimes ¼ $1). We performed simulations with numerous

customer valuations. We present results for valuations

corresponding to prices charged in movie theaters.4 In case

of the Uniform and Zipf distributions, customer valuations

for product A are drawn from the set {20, 30, 40, 50, 60},

while customer valuations for product B are drawn from the

set {50, 60, 70, 80, 90}. For Normal distribution, the km;sl
of the distributions are: k40; 5l for product A, and k70; 5l for

product B. We chose a higher mean valuation for product B

because it is offered at a higher LoS.

4.4. Pricing policy

We assume that the content-provider will charge at least

$1 and not more than $10 for serving the content. We

simulated all three pricing algorithms described in Section 3.

For the TEP algorithm, we set small jump probability to be

0.05 and big jump probability to be 0.001 as mentioned by

Sairamesh and Kephart [6]. For the DFP algorithm, price

increments were chosen from a uniform distribution in the

range ½0; n�; where n is a random number in the range ½L;H�

chosen at the beginning of the simulation. In case of the

HYBRID algorithm, we chose a server load threshold of

0.80. When current server load exceeded this threshold,

exponentially increasing prices were charged.

In addition to these dynamic pricing algorithms, we also

simulated a fixed pricing algorithm. Since the content

provider will not charge less than $1 or more than $10, and

does not have any prior knowledge of customer behavior,

any price in the range $1 to $10 is equally likely. However,

the content provider can make two observations about the

customer behavior: (1) valuation for product B is likely to be

higher than valuation for product A, and (2) valuations are

likely to be integer dollars.5 Based on these observations, we

performed separate simulations where the fixed price for A

was chosen from {19.99, 29.99, 39.99, 49.99, 59.99, 69.99,

79.99, 89.99} and that of B was chosen from {19.99, 29.99,

39.99, 49.99, 59.99, 69.99, 79.99, 89.99, 99.99}. The prices

are slightly less than an integer value because customers

will accept the content only if the price is strictly less than

their valuation. We ran simulations for each fixed price of A,

and each price of B which was greater than or equal to the

price of A. Since any of these prices is equally likely, in our

results we shall only present the mean performance over

these prices.

4 We have observed theaters charging anywhere in the range of $2:50 to

$8:50 for movies.
5 This observation is clearly false in case of the Normal distribution, but

is likely to be true in real life.
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4.5. Request arrival process

In order to test the robustness of the pricing algorithms,

we used four different request arrival process, which we call

Workloads. These are shown in Fig. 2. Workload 1, 2, and 3

are artificial request arrival processes that we generated to

illustrate the behavior of the pricing algorithms under

different situations. Workload 4 is a semi-realistic request

arrival process that we generated from the request logs of a

Content Delivery Network.6 Workload 1 represents a

scenario where there are very few requests for content,

and the server has enough resources to accommodate all the

requests. Workload 2 represents the scenario where the

server is continuously overloaded. But even this scenario is

‘static’ in the sense that there is no change in the request

arrival pattern over time. Workload 3 represents a scenario

where there is a sudden synchronizing event, which

generates very large number of requests in a short time

frame. The heavy load subsides just as suddenly as it starts.

Workload 4 represents the number of requests for multi-

media content in Quicktime format on April 15, 2001. We

chose this day arbitrarily from the log files for the period

December 28, 2000 to September 8, 2001. We could not

ascertain the actual bit rate of the streams from the available

data. However, based on the recorded value for total bits

transmitted in each hour, we generated the arrival process

assuming that the streams are either 64 or 256 kbp.

For the first three Workloads we assume that requests for

A and B are equally likely and that the relative fraction of 64

versus 256 kbp requests does not vary throughout the day.

This allows us to study the impact of the request arrival

process on the pricing algorithm in greater detail. In case of

Workload 4, our objective is to study the behavior on a

‘normal day’. Therefore, we also vary the relative fraction

of 64 and 256 kbp requests. The relative fraction of 64 and

256 kbp requests estimated from the log files is shown in

Fig. 3. As can be seen, the fraction of requests for the 64 kbp

stream though varying throughout the day, is much higher

than the fraction of requests for the 256 kbp stream.

5. Results

Our simulation results can be divided into two parts. In

the first part, our objective is to understand the behavior of

the HYBRID pricing algorithm. To this end, we present

results from a sample simulation run under different

customer behavior and system load profiles. In the second

part, we compare the overall performance of the HYBRID

algorithm with that of other pricing algorithms under

different customer behavior and system load profiles.

5.1. Understanding the behavior of the hybrid

pricing algorithm

All our simulations are performed over one day of

simulated time. For all the simulation results presented in

this sub-section customers’ valuations were drawn from the

Uniform distribution described earlier. In our results, we

present price as a number in the range 0–1. We obtained this

Fig. 2. Request arrival process.

Fig. 3. Relative fraction of 64 and 256 kbp requests.6 The name of the CDN has been withheld on request.
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number by dividing the price by 100 (the price upper

bound). We study the behavior in terms of the following

metrics

† Evolution of price for each product. We study how price

varies throughout the day and how it is correlated to

external events.

† Evolution of server load due to each product. In our

simulations, we assume that outgoing bandwidth is the

bottleneck resource. We define server load due to a

product to be the ratio of outgoing bandwidth consumed

by active requests for that product to the maximum

allocation for that product.

† Evolution of relative fraction of server resources

reserved for each product. We reserve server resources

according to Eq. (3). We study how the relative fraction

of resources varies with time.

In many of our simulation results we shall observe that

HYBRID takes around 300–400 min to converge to a stable

price. This occurs because HYBRID requires five data

points before it estimates customer behavior parameters

described in Eq. (4). A data point is the result of observing

customer behavior for an interval of time using a test price.

For the simulations discussed in this article, we chose an

interval size of 45 min. Hence, price fluctuations can be

observed for at least the first 45 £ 5 ¼ 280 min: This time

period can be reduced using a smaller time interval or by

considering fewer data points for estimating the customer

behavior parameters. We now present illustrative simulation

results for five different scenarios.

5.1.1. Scenario 1: low request arrivals,

sufficient resources

We used Workload 1 to generate this scenario. Requests

were generated using a Poisson process with

mean 1.4 min21. Requests for A and B were equally likely.

Fig. 4 shows a sample simulation run.

HYBRID first experiments with different prices in order

to observe the fraction of customers accepting those prices.

This can be seen in the fluctuation in prices of both A and B.

In some cases, the price chosen results in no customers

accepting the price, or all customers accepting it. We can

see this behavior in time interval 0–45 for product A where

no customer accepts the price (because the maximum

customer valuation is 60), and in time interval 135–180 for

product B, where all customers accept the price (because the

minimum customer valuation is 50). When this happens, a

new price is chosen and the experiment is repeated. Once

HYBRID learns the parameters, it predicts the ‘optimal’

price using the maximization problem defined in Section 2.

As can be seen, the price converges for product A, while

there is some re-learning in case of product B.

The relative fraction of resources allocated to each

product does not vary significantly throughout the day. This

is because the request arrivals for A and B are nearly

Fig. 4. Low request arrivals, sufficient resources.
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the same throughout the day. Also note that the server load

is not very high for both the products due to the low rate of

request arrivals.

5.1.2. Scenario 2: high request arrivals,

insufficient resources

We used Workload 2 to generate this scenario. Requests

were generated using a Poisson process with mean

20 min21. Requests for A and B were equally likely. Fig. 5

shows a sample simulation run.

HYBRID behaves very differently in this scenario. As

before, for product A, the algorithm begins with a very high

price as a result of which, no customer accepts the price.

After the 45 min interval, HYBRID lowers the price.

Immediately, because of the high request arrival rate, the

server load shoots up and soon surpasses the threshold of

0.8. Whenever the server load exceeds this limit, HYBRID

charges an exponentially increasing price computed using

the formula ð9 þ 91xÞ; where x is the current server load.

The high price immediately arrests the increase in server

load. The server load remains static around 0.9 because of

the requests that are already being serviced. Once these

requests are no longer active, the server load drops and

consequently the price. This again leads to an increase in

server load. This cyclic behavior is observed for the first

350 min. However, at the end of this time-period, HYBRID

converges to a price that is just sufficient to maintain a high

system utilization but still lower than that imposed by

the threshold server load. On the brief occasions that the

server load exceeds the threshold, the price increases. This

can be observed by noticing the spikes in the figure, and the

corresponding server load. A similar behavior is observed

for product B.

5.1.3. Scenario 3: cataclysmic synchronizing event,

very high load for short interval

We used Workload 3 to generate this scenario. Requests

were generated using a Poisson process with mean

3.4 min21, which represents a moderate load for the system.

In the interval 600–800 there is a sudden surge in the

request arrivals. During this interval requests are generated

using a Poisson process with mean 40 min21. Requests for A

and B were equally likely. Fig. 6 shows a sample simulation

run.

HYBRID converges to a stable price within 350 min in

case of product A. But there is a sudden surge in arrivals

after time 600. This is reflected in a high server load and

exponentially increasing prices. HYBRID returns to the

original price shortly after the surge in arrivals ends. The

behavior for product B is similar. The price is nearly stable

except for the occasional spikes in price due to the moderate

load of the system. When the sudden surge in arrivals begins

at time 600, very high prices are charged for the next

200 min. After the surge dies down, the prices fall to

original levels. But owing to the moderate load, there are

constant spikes in the price.

Fig. 5. High request arrivals, insufficient resources.
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5.1.4. Scenario 4: a normal day at a real content

delivery network

We used Workload 4 for this scenario. Requests were

generated using the request records on April 15, 2001 at

a real Content Delivery Network. The arrival process and

the relative fraction of 64 and 256 kbp requests are

shown in Figs. 2 and 3, respectively. Fig. 7 shows a

sample simulation run.

This scenario generates moderate load on the server

resources. However, because request arrivals are not very

high, HYBRID is able to converge to a stable price, which it

maintains throughout the day. Notice that even though total

request arrivals are similar for this scenario and the previous

scenario (except during the surge), the system is compara-

tively lightly loaded in the current scenario. This is because

the number of requests for product A far exceed that for

request B. Since requests for A consume fewer resources, the

server is less loaded than in the previous scenario. The

interesting feature in this scenario is the allocation of

resources to both products. In this scenario, the relative

fraction of 64 and 256 kbp requests varies throughout the

day. The system responds by changing the allocations

accordingly.

5.1.5. Scenario 5: sudden change in customer behavior,

sufficient resources

In this scenario, we changed the customer behavior after

700 min of the simulation. The valuations for product A

were drawn from the set {50, 60, 70, 80, 90} and

the valuations for the product B were drawn from the set

{20, 30, 40, 50, 60}. This is an unrealistic scenario because

the valuations for a higher quality product are lower than the

valuations for a lower quality product. However, our

objective is to study how the pricing algorithm reacts to

changes in customer behavior. We used Workload 4 to

generate the request arrival process for this scenario. Fig. 8

shows results from a sample simulation.

Ideally, the price of product A should increase after time

700, and the price of product B should decrease after time

700. But we observe a very interesting behavior in the

sample simulation. While the price of B converges to a

lower value within 300 min (approximately five intervals of

observation) after the change in customer behavior, price of

A does not converge immediately as expected. Instead,

because the old price is very low price, many customers

accept the price. This leads to an increase in server load, and

consequently exponentially increasing prices are charged

for some time. Thus convergence time is longer when the

customer valuations increase.

5.2. Comparing HYBRID with other pricing algorithms

In this section, we compare HYBRID with other pricing

algorithms with the objective of evaluating its performance

in terms of revenue, as also its robustness. We use two

metrics for our comparison: (1) revenue earned, and (2)

fraction of customers denied service in spite of accepting the

quoted price. The higher the revenue earned, the better

Fig. 6. Cataclysmic synchronizing event, very high load for short interval.
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the algorithm. The smaller the fraction of customers denied

service in spite of accepting the price, the better the

algorithm. The simulation results presented in this section

are averaged over five simulation runs with different seed

values of the random number generator. The results are

presented in tabular form as a tuple kR; rl where R is the

revenue earned rounded off to the nearest 1000, and r the

fraction of requests denied service.

Fig. 7. Scenario from a Real content delivery network.

Fig. 8. Sudden change in customer behavior, sufficient resources.
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We performed simulations for all the request arrival

processes, all the customer valuation distributions, and all

the pricing algorithms we described in Section 4. For each

request arrival processes, each customer valuation distri-

bution, and each pricing algorithm, we simulated two

situations: (1) there is no change in customer behavior

throughout the duration of the simulation and (2) customer

behavior changes after 700 min of simulated time.

5.2.1. Simulation 1

Table 2 presents results for the set of simulations where

there is no change in customer behavior throughout the

simulation. As can be seen, the revenue earned by HYBRID

is much higher than revenue earned by the other algorithms.

On average, HYBRID earns between 75 and 200% more

than the TEP and between 10 and 48% more than the DFP

algorithms. However, there were some simulations in which

both TEP and DFP algorithms earned revenues comparable

to that earned by HYBRID. This happened when the initial

price chosen was close to the ideal fixed price. Even in those

simulations, the HYBRID algorithm earned as much or

slightly more revenue. The DFP algorithm outperforms the

TEP algorithm in all the cases shown here, mainly because it

learns the customer behavior better than TEP. We also

observe that for Workload 2 and 3, the service denial rate is

very high for both TEP (0.24–0.30) and DFP (0.36–0.49)

algorithms. This is because, they charge a low price and

cannot accommodate all the requests. Such high service

denial rates would be unacceptable in a commercial content

delivery system. The HYBRID algorithm on the other hand,

has no service denials for any of the request arrival

processes. This is because of the exponentially increasing

price that is charged when the server is heavily loaded. The

exponentially increasing price function that we used in this

article depends on the upper bound price. If the upper bound

price chosen is much smaller than possible customer

valuations, then HYBRID too will have service denials.

But we believe that content providers can estimate upper

bounds on valuations for commodity products with

reasonable accuracy.

The revenues presented for the FIXED algorithm are the

means across a number of equally likely prices. In our

simulations, we observed that while some fixed prices

generated very high revenues, other fixed prices generated

zero revenue. One intuitive example is to charge $9.99 from

every customer. For the customer valuation distributions we

chose for these simulations, this price will generate zero

revenue. We believe that, fixed prices are ideal because of

their simplicity. However, finding the ideal fixed price is

extremely difficult. Moreover, systems with fixed prices are

not robust to heavy server loads. For example, the mean

service denial rate for Workload 2 and 3 is between 0.24 and

0.36, which is clearly unacceptable.

5.2.2. Simulation 2

In the second set of simulations, we changed customer

behavior distributions after 700 min of simulated time. The

new distributions are as follows. The Uniform and Zipf

distributions for product A were drawn from {20, 30, 40,

50}. For product B, the valuations were drawn from {40, 50,

60}. The km;sl for Normal distribution were k30; 2l for

product A and k50; 2l for product B. The results of the

simulations are presented in Table 3. Because the results are

similar, we only present results for Workload 4. The

HYBRID algorithm consistently generates high revenues

in comparison to the other algorithms mainly because

it learns the customer behavior by experimenting with

different prices. All the results appear consistently similar

to the results in the first set of simulations. Notice that

the revenues are lower than in Simulation 1 because the

customer valuations have decreased.

The reason why DFP and TEP do not perform well is that

the algorithms do no consider resource constraints. They

were primarily designed for a scenario where e-content can

be delivered at leisure. We also ran other simulations to

evaluate our choice of parameters for the algorithms. We

only present a summary of our findings. We observed that

performance of the TEP and DFP did not vary when we

changed the interval after which prices are reassessed. This

was because the jumping probabilities for TEP are very

small, and in case of DFP, the algorithm itself is

Table 2

Simulation 1: no changes in customer behavior

HYBRID TEP DFP FIXED

Workload 1

Uniform k68; 0:00l k28; 0:00l k47; 0:00l k45; 0:00l
Normal k62; 0:00l k25; 0:00l k48; 0:00l k33; 0:00l
Zipf k48; 0:00l k27; 0:00l k43; 0:00l k38; 0:00l

Workload 2

Uniform k220; 0:00l k122; 0:30l k193; 0:49l k199; 0:36l
Normal k190; 0:00l k117; 0:28l k149; 0:49l k136; 0:30l
Zipf k238; 0:00l k122; 0:29l k185; 0:36l k196; 0:30l

Workload 3

Uniform k149; 0:00l k74; 0:25l k131; 0:40l k124; 0:27l
Normal k153; 0:00l k68; 0:23l k139; 0:42l k89; 0:24l
Zipf k126; 0:00l k72; 0:24l k122; 0:37l k111; 0:24l

Workload 4

Uniform k124; 0:00l k42; 0:00l k84; 0:00l k91; 0:00l
Normal k100; 0:00l k36; 0:00l k89; 0:00l k70; 0:00l
Zipf k100; 0:00l k41; 0:00l k75; 0:00l k78; 0:00l

Table 3

Simulation 2: changes in customer behavior

HYBRID TEP DFP FIXED

Workload 4

Uniform k105; 0:00l k34; 0:00l k70; 0:00l k72; 0:00l
Normal k79; 0:00l k32; 0:00l k70; 0:00l k48; 0:00l
Zipf k72; 0:00l k33; 0:00l k62; 0:00l k63; 0:00l
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independent of the interval. In case of the HYBRID

algorithm, however, we observed that a small interval

generates higher revenue but increases service denial rate.

We found that an interval of 45 min was ideal in terms of

revenue as well as service denial rate. We also observed that

by increasing the big jump and small jump probability, the

performance of the TEP was more erratic. The revenue did

not increase or decrease in a consistent way with increasing

jumping probability.

6. Conclusions

In this article we developed an approach for pricing

delivery of e-content in a system with multiple LoS. The

pricing scheme, called HYBRID, is dynamic because the

price varied with time. The pricing scheme is based on

observing customer reactions to price and provisioning of

resources among the different levels of service. Resources

are dynamically provisioned based on the amount of

resources that requests for each LoS could consume. We

presented a number of scenarios illustrating the robustness

and scalability of our algorithm. We examined how price

controls server load, and how it can be used effectively to

increase robustness and scalability of servers. We also

compared the performance of this scheme with two other

simplistic dynamic pricing schemes adapted from work by

other researchers, and a naive fixed pricing scheme. We

performed simulations using a variety of request arrival

processes and semi-realistic data to evaluate the perform-

ance of the algorithms. We observed that the HYBRID

pricing scheme consistently generates high revenues across

a range of customer and system profiles. We also observed

that the HYBRID pricing scheme reduced the number of

customers rejected service due to resource constraints

mainly by charging high prices at times of peak load. We

observed that the two other dynamic pricing schemes failed

to generate higher revenues mainly because they do not

consider resource restrictions for content delivery. Fixed

pricing schemes appear to be very appealing because of

their simplicity. However, they are not scalable and robust.

This is because, there is no mechanism to prevent customers

from purchasing during times of heavy server load.
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