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Abstract: In this paper we present a framework for plagiarism detection. Rather than exhaustively
or randomly searchingsentencesin a student paper on the Internet for possiblesourcesof
borrowedideasin student’stext,we takea middleground.With intelligentselectionof sentences
from paperswe will show that examplesof plagiarismcan be found just as frequentlyand with
fewer queriesto Internetsearchengines. Oneof our goalsis to usethis technologyto develop
freewarethat any instructoror teachingassistant,evenmodestlynon-technicalones,can useto
detect plagiarism in their classes.

Introduction

Thereis a simple fact that is sendinga chill throughacademia:plagiarismin studentwork is on the rise. The
Internetis only goingto maketheproblemworse. Plagiarismis definedaspresenting,“asnewandoriginalanidea
or product derived from an existing source” (Merriam-WebsterOnline, 2003). FurthermorePlagiarism.org
(Plagiarism.org,2003)saysthat therearevarying degreesof plagiarism.The rangeruns from copyingsomeone’s
work verbatimto copysomeone’sideaswithout propercitation.Studentsoftendo not, or choosenot to, understand
the most basicrule: if you borrow from someone’swork, you must to give him or her credit.With the Internet
makingmoretext availablefor studentsto get ideasfrom, includingactualservicesthatoffer plagiarizedpapersto
students, detecting and preventing plagiarism is becoming an even greater challenge.

According to McCabe(McCabe,2002), 10% of college studentshave copied severalsentencesfrom Internet
sourceswithout a propercitation. Also, 5% haveturned in entire works from websitesor so-calledterm-paper
mills. The numbersareevenworseamonghigh schoolstudentswith 52% having copiedfrom Internetsources
without proper citation, and 16% turning in papersfully from websitesor term-papermills. Worse yet, more
studentscheateveryyear(McCabe,2002). Not only is it the problemof cheatingin currentclassesbut also the
looming problem created by the tidal wave of students that believe plagiarism is a way to succeed.

To addressthis issueit is importantfor schoolsto actively deter,preventanddetectplagiarismin studentpapers.
While honorcodescandeterplagiarism(McCabe,et.al, 2002),theyarenotenough.To furtherdeterstudentsfrom
cheatingtheremustbea way for instructorsto detectplagiarism.The traditionalmethodsfor detectingsuchcases
arelooking for changesin styleor identifying passagesthat soundfamiliar. In orderto thenprovethe suspicion,
instructorsmustusea tremendousamountof intuition to exhaustivelyhunt for the reference.Newermethodsare
only slightly better. Instructorsreadthe material,identify key phrasesand searchthe Internetfor thesephrases.
However,we believean automatedprocesswill catchmorestudentswho attemptto cheatand makethe process
muchfaster.It is the intentof this paperto presenta frameworkthatwill automaticallycatchthosewho chooseto
cheat.

We haveidentified four different approachesto plagiarismdetection.Theseapproachesdiffer in the numberof
queriesthat are requiredand in how effective they areat finding cheaters.By categorizingtheseapproachesand
evaluatingtheir effectiveness,we hopeto find anapproachthatcombinestheleastnumberof querieswith thebest
possible effectiveness.

Of the techniqueswe have considered,the most thoroughis exhaustivesearching.Searchesdoneexhaustively
meanthat theentiretext of a documentis comparedagainsttheentireInternet.At oneextremea “window-based”
approachcanbe used.With the window approacha window size is chosenandthenis usedto iteratethroughan



entire document one word at a time searching the Internet for the words within each window. The number of
queries required for this approach is on the order of the number of words in the document. A much more reasonable
approach is to break the document into its individual sentences and querying either the entire sentence or fragments
of the sentences. This reduces the number of queries to approximately the number of sentences. While these
approaches are very effective at catching plagiarism, they are inefficient. Reducing the number of searches by
being more intelligent about the input to the search engine is a much better approach and may be just as effective.

The first approach taken to reduce the number of queries is using surface linguistic techniques, specifically
readability scores. By looking at the readability score of each sentence, the search can be narrowed to only those
sentences outside a certain tolerance. Many instructors look for changes in writing styles to identify possible
excerpts of student assignments that may be plagiarized. A change in readability scores may be indicative of style
changes. While the surface features may do a good job of identifying suspect text, there may be other linguistic
features that are even better at identifying possibly plagiarized excerpts. Features such as punctuation density or
part-of-speech density may be even better indicators. By looking at these linguistic features we hope to be able to
identify changes in writing style within a document. 

Other deeper linguistic features that look at the syntax and semantics of a sentence may be even better. By looking
at a student’s use of grammar, specifically incorrect usage, it may be possible to narrow the search to only those
sentences that suddenly use the correct grammar. This has been used effectively for students who are non-native
English speakers. From here we may progress even deeper into the linguistic features by compiling fingerprints of
writing styles for each author. By looking at sentences that do not fit into the fingerprint, suspect text can be
identified.

While all the previous approaches require queries on the order of a number of sentences or words, it may be
possible to lower the number of queries some constant number per document, or better yet, per assignment. If the
assignment subject is narrowed enough it may be possible to do only a few queries based on keywords used for the
assignment. Once keywords are identified and searched for, the results can be downloaded and each assignment
searched against this set of documents. The theory being that if a student is going to plagiarize from the Internet, it
is most likely going to be from Internet sites that use the relevant keywords and that they will only look within the
first 100 results. The challenge then becomes properly identifying the correct set of keywords. Analyzing each
document and identifying the keywords associated with the entire document can either be done manually by the
instructor or teaching assistant, or automatically.

Finally, at the other extreme from exhaustive searching, is random selection of sentences within an assignment. We
believe that this is not a particularly effective approach, but unlike the other approaches discussed, requires almost
no additional work. The idea simply involves randomly selecting a number of sentences from the assignment and
then searching for those sentences, or fragments of them, in the Internet. 

Having discussed a full spectrum of approaches, in this paper, we begin to analyze these approaches and better
understand their effectiveness. In what follows, we present our initial framework for automatically detecting
plagiarism and evaluate its effectiveness. First, we look at exhaustive approaches and then present others that select
sentences to be inspected without exhaustively searching for every sentence in the Internet. The results of these
processes are then presented and conclusions are drawn about their overall effectiveness. We also discuss areas of
future research.

Related Work

The work most related to ours was originally started as a project by two Biophysicists at the University of
California, Berkeley that eventually turned into a private venture: Turnitin.com, formerly plagiarism.org
(Turnitin.com, 2003). While they seek to accomplish the same things that we are, they approach it in a much
different way. Turnitin.com has its own servers with terabytes of information, collected from crawling the Web,
subscribing to term paper mill sites, and collecting past papers from those who submit papers to be checked for
plagiarism. Entire papers are then compared against this database of information.



Where we differ from them is in the philosophy of how to do the searches. While we both seek to find sources on
the Internet, we feel their process is overkill. They can catch every single copied sentence but at a great cost of time
as they search each sentence against all of the data they have collected. We instead look to intelligently selected
sentences that are likely candidates and flag a paper as suspicious if those sentences are found in sources on the
Internet. And then, like them, let the instructor or grader determine if the student has acted improperly in borrowing
from a source. Our framework, like that of Turnitin.com, can easily be connected into any database of text, whether
it is the Internet or a collection of past assignments. 

One issue of concern for Turnitin.com is the legality of transferring a copy of each student’s work to an outside
organization. While some argue it violates the students’ copyrights (Paulson, 2002), Turnitin.com reassures
institutions this is not an issue since it falls into the category of fair use. However, we still believe that a) this issue
has not been properly resolved, and b) it may also violate students’ privacy. By employing an in-house system
instead, it is more likely that these issues will not be of concern.

Another piece of related work is CopyFind (Plagiarism Resource Site, 2003). While its goal is also to detect
plagiarism, its search domain is more limited. Rather than finding borrowed text from the Internet, it compares a
collection of student papers to each other. If enough similarity is found between two papers, the papers are flagged
for further inspection. CopyFind has no ability to determine if sources from the Internet were used. 

Other related work deals with collecting digital media. SCAM (Shivykumar, 1995) and CHECK (Si, et. al, 1997)
deal with finding similarities among documents in a common database. While their main focus is on finding similar
documents in a file system or other databases of digital media, they are different from our work in one major
respect. They look at similarities of documents as a whole, not at individual sentences. Usually if the documents are
no more similar than 25% the same documents are not flagged. We are working in a context where similarity is not
necessarily important, but identical text of maybe only a few sentences would be considered important. If we find
that the average student paper is 100 sentences long and we want to flag all papers with at least five sentences that
are possibly copied, then we are only talking about an overlap of 5%. Furthermore, these systems tend to not take
any contextual similarities into consideration. This makes them easy to defeat by merely changing key words
throughout the new document.

Still another body of work concentrates on finding plagiarism within programming assignments. For example
MOSS (Boyer and Hall, 1999) and Sherlock (Joy and Luck, 1999) are two examples. However these solutions are
similar to CopyFind in that they only look for duplicates among a single set of assignments and do not have the
ability to search for versions outside of what is provided as input. Another well know system for detecting
plagiarism in programming assignments is SID (Chen 2002). While it aspires to the same goal as the first two tools,
it is quite different. SID uses a measure based on Kolmogorov complexity, which is universal. The truly unique
feature of SID is the fact that because the Kolmogorov complexity is universal it is not, in theory, cheatable. While
this system is targeted toward finding similarities in code, it could be altered to detect similarities in plain text as
well. This system could then be very effective at detecting plain text plagiarism. However, this system, as it is now,
is not meant to find similarities in text, which is the focus of this paper. 

Automatic Plagiarism Detection

The ideas we are presenting here in using Internet search engines such as Google (Google, 2003) to search for text
in students’ work are relatively straightforward. There exists a wide spectrum of ways to determine a) whether any
part of a student’s work has been plagiarized, and b) which parts of the work are copied. The more interesting and
more challenging question then is what parts of the work should be used in a search on Google. The choices range
from using every window of n words in a document, to randomly selecting a part of a single sentence. While it
would be expected that the exhaustive search would catch the most cheaters, we believe that a more selective
process can be used to significantly reduce the number of searches that are needed and still catch the same, or
almost the same number of cheaters. Below are different techniques we have developed and evaluated.



Exhaustive Searching

As mentioned before, exhaustive searching is probably the best and most effective way of detecting plagiarized
work. However, there can be different definitions of what “exhaustive” means. One example would be to search for
every combination of words in the paper. This though, would result in so many queries to Google, that it would
take a very long time to process a single paper, not to mention an entire class full of papers. Furthermore, Google
has strict rules about the number of searches than can be submitted per IP address per day. Instead, we use a
simplified exhaustive search. This technique breaks every paper into each of its sentences and submits the first
eight words from each sentence that is at least eight words long. This limits the number of queries to about 100 per
paper. The number eight was chosen because it returns fewest false positives and avoids the problem of many
documents containing common phrases in all text. 

Once all the sentences are collected from each of the papers, they are sent as queries to Google and the results are
saved. These results are then inspected for any possible instances of plagiarism. If any combination of one or more
sentences returns a hit for some URL, it is flagged for further investigation. Here is where human investigation is
critical. While this framework is automatic, it cannot make the final judgment as to whether or not plagiarism has
actually occurred. It is up to the graders and/or the instructor to make the final judgment.

Narrowing the Search

We used the exhaustive search for a set of approximately 480 papers from a lower division college course in
Political Science. Each paper was approximately 10 pages long. Using a true exhaustive search would have
resulted in about 1,400,000 searches. Using our simplified exhaustive method, we narrowed the number of
searches to about 55,000. The next step then is to look at more intelligent techniques to try and reduce the number
of search queries even further. Given that there are quite a number of different possibilities, the challenge is to
choose the one that is effective but does not require a huge number of searches.

Using Surface Linguistic Features

Linguists have developed may surface linguistic features over the years (Fry), (Gunning, 1952), (McLaughlin,
1969). These usually involve calculations based on the number of words per sentence and distribution of syllables
in each word. While these linguistic features give no weight to the context of the sentence, research has shown they
are effective in determining the readability of a given work. 

As mentioned before one technique for manually detecting plagiarism is to look for changes in writing style. It is
our hypothesis that readability scores can spot changes in style. By determining the readability score for each
sentence and then choosing the scores below a certain level, it is hoped that the system will flag just as many papers
for further inspection as the exhaustive search does. While intuitively it seems that the sentences with the higher
grade level scores are the most likely candidates, this is in fact not the case. The grade level scores give some
indication as to the readability of the text. Text that has been published in some form or another, tends to be more
readable than that created by students. Therefore, we now believe that the most likely text to be plagiarized is not at
the high end of the grade level score, but at the low end.  This text will differ from what students traditionally write,
which is at the high end. 

For our process we chose the Flesch-Kincaid Grade Level (see Figure 1 for the exact formula) as our surface
linguistic feature. Each sentence is processed by the UNIX command style (Haardt, 2002), which includes many
different surface linguistic features. The score is recorded for each sentence and the sentences are then ranked after
each paper is processed. All sentences with a grade level below 10 are then chosen to be sent to Google to see if
they exist somewhere on the Internet. Just as in the simplified exhaustive case, all the results are saved and later
analyzed to see if in fact the sentence was plagiarized.



(.39 x ASL) + (11.8 x ASW) – 15.59

where:

ASL = average sentence length (the number of words divided by the number of sentences)
ASW = average number of syllables per word (the number of syllables divided by the number of words)

Figure 1. Flesch-Kincaid Grade Level Score (Microsoft, 2003).

To summarize,our analysisstrategyconsistsfirst of sendingthekeywordsto Google. Second,thehits returnedare
downloadedfrom theInternet.Next,eachpaperis exhaustivelysearchedagainstthedownloadedpages.All hits are
thenrecordedandanydocumentthat hashits is flaggedandremovedfrom thepool of papersthat will beusedto
build further queries for the surface linguistic feature search. Because we are doing an exhaustive search locally, we
can searchthe downloadeddocumentsmore thoroughly and have greaterconfidencein the findings. In our
experience,this reducesthenumberof searchby approximately20queriesperpaperflagged.Oncethelocal search
is done,the list of sentencesis combinedusingthesurfacelinguistic features.As before,we takeall thesentences
with Flesch-Kincaidscoreslessthan10, truncateit to includeonly the first eightwords,andsearchGooglefor any
hits. By combining the two processesit is hopedthat more hits can be found with an even lower numberof
searches.

Evaluation

To evaluatethe effectivenessof our proposedmethodwe collected480 papersfrom a freshmanlevel political
sciencecourse.Thesewere turnedin electronicallyin the form of Microsoft Word documents.Oncewe hadthe
files we usedwvware (Lachowicz,2003) to extractthe plain text from the files so that they could be processed
more easily.  After the text was extracted, the papers were broken into sentences for evaluation.

TheprogramminglanguagePERLwasusedto extractthesentences.Eachline of text wasreadandafteranentire
sentenceis extractedthe first eight contiguouswordsaresavedto an output file alongwith the nameof the file
from which it came.This output file was later used to composethe queriessent to Google. The sentences
themselveswere extractedusing a simple regular expressionthat works for most sentencestructures.Any
quotationswithin a sentenceare treatedas part of the sentence,even if the quotationitself containsmultiple
sentences.Whenidentifying the eightwords to be searched,we only lookedfor eight contiguouswordsthat were
not within a quote. Therefore,while usually the first eight words are selected,it may be the casethat eight
contiguouswordsarenot found until after a quotein a sentence.Searchesfor quotationsarenot donesinceit is
assumedthattheyareproperlycited.Therefore,verifying propercitationsis outsidethescopeof this project,andit
is left to the instructor.

Onceall of the sentencesareextractedfrom the papers,it waspossibleto searchGooglefor possibleplagiarism
sources.HereagainthePERLprogramminglanguageis usedalongwith themodulelibwww-perl (Aas,2003).The
previouslygeneratedoutputfiles becomethe input to this secondprogram.Thesentencesareread,andsentto the
Googlewebsitewithin quotationmarks. By puttingthesentencein quotationmarkswe indicateto Googlethatwe
only want matchesthat haveexactly the text for which we aresearching.Also, thenumberof resultsreturnedis
limited to 10. From our experiencewe noticedthat most instancesof actualplagiarismonly returnone or maybe
two results.Thosewith moreresultsareusuallytheresultof searchingfor commonsentencefragmentsthatappear
in other documents but are not plagiarized. As before these results are saved to a file for further processing.

Thelast stepin theprocessis to analyzetheoutputfiles from thepreviousstep.Herewe searchfor sentencesthat
producehits on thesamewebsiteasothersentences.Originally we thoughtto only flag consecutivesentenceswith
hits on the sameweb site,however,we realizedthis would not catchall forms of plagiarism.And in fact the first
paperwe flaggedashavingsentencescopiedfrom an Internetsourcewithout propercitationwould not havebeen
caughtusingour original approach.In this case,thestudentcopiedsix sentencesfrom two sourcesandnoneof the
sentenceswereconsecutive.And while this approachdoesnot catchthosewho chooseto stealonly onesentence
from eachsource,this canbe dealtwith by extendingthe numberof wordsin the searchstring. For now we are



only concentrating on those who copy multiple sentences from a single source.
We now havea comprehensivereport on eachpaperand the possiblehits that were producedfrom each.These
reportscanbe inspectedby thegraderor instructorto determineif anystudenthasimproperlyleft out citationsor
has plagiarized the work of another.

Results

Theresults(seeTable1) justify further researchinto betterwaysin which to reducethenumberof queries.Using
theexhaustivesearchingtechnique,which involved over 55,000queriessentto Google,we identified four papers
that to onedegreeor anotherborrowedfrom otherwork without propercitation.Onepaperblatantlycopiedfrom
anothersource.In it there was two entire paragraphsand three more sentencesfrom three different sources.
Anotherpaperborrowedsix sentencesfrom two sourcesandspreadthosesentencesthroughoutthepaper.The last
two examplesinvolve thestudentscopyingtwo sentencesfrom onedocument.In all casestherewasabibliography
and other paperswere cited, but noneof the copied text was from papersactually cited. Therefore,it seems
unlikely that the students did not know how to do proper citations or simply forgot.

Type of Search Number of Queries Number of Possible Hits
Exhaustive Search 55,522 4
Narrowed Search 18,152 3

Table 1. Results collected from testing Framework

When we reducedthe numberof queriesto 18,000using the surfacelinguistic features,we got similar results.
However,not all of the plagiarizedsentenceswere found. This was becausesomeof the copiedsentenceshad
Flesch-Kincaidgradelevels higher than ten. The end result was that all but one of the papersflagged in the
exhaustivesearchwere flaggedby the Flesch-Kincaidsystemaswell. However,becausethe paperthat was not
caughtonly hadtwo sentencesin it that werecopied,we are quite pleasedwith this result.Realistically,we are
uncertainwhethera paperwith only two plagiarizedsentenceswould actuallybe prosecutedasa cheatingoffense.
Therefore,the fact that we would not haveidentified this paperas possiblybeing plagiarizedis not particularly
significant.

Conclusion and Future Work

While we would like to seea greaterreductionin the numberof queriesin future work, we haveshownthat the
numberof queriescanbe reduced.By choosingsentencesintelligently ratherthanblindly searchingeachsentence
exhaustively,we haveshownthat it is possibleto catchalmostall of thosewho choseto cheat.In the future we
would like to see an even greater reduction in the number of queries and at the same time catch all of the cheaters. 

The next step is to find ways to betterselectpossiblesentencesfor submissionto Google.While the surface
linguistic featureslook promising,metricsthat look deeperinto the contextof eachsentenceare needed.These
contextualmetricscouldbe anythingfrom part-of-speechdensities,suchasthenumberof pronounsor numberof
adjectives,to the density of stop words such ‘the’ or ‘an’. We haveshown that we can reducethe numberof
queries,now we must refine the processto reducethem even further and retain our accuracyin identifying
improperly borrowed text.

Becausewe do not know which contextualmetrics are the most revealing, it may be better to use pattern
recognitiontechniques.Well-known patternrecognitiontechniquesarebasedon this principal. By countingthe
densitiesfor all interestingmetrics,thosethat arenot goodat differentiatingauthorswill becomelesssignificant
while thosethat arebetterat differentiationwill becomemoresignificant.Exploiting patternrecognitionfeatures
will perhapsleadto a bettertechniqueto identify potentiallyplagiarizedsentencesin the futureandfurther reduce
thenumberof queriesrequired. While thisprocessmaynot catchall cheaters,it will catchsomeandfurtherreduce
the numberof queriesthat the previouslymentionedprocessneeded.Oncea paperis flaggedasbeing possibly
plagiarized,thereis no needto sendanyqueriesto Googlefor thatpaper.On averagewe would expectto save10
to 20 queries per paper flagged with this process and in some cases no queries at all. 
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