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Abstract— Content delivery has become an important enterprise on the
Internet. There exists a huge demand for bandwidth-intensive, rich mul-
timedia content like news, entertainment services and software. Two key
issues associated with any content-delivery system are: revenue and user
satisfaction. In this paper, we explore the domain of pricing for content de-
livery, and how it relates to revenue, and system utilization. A fundamen-
tal contribution of this paper is to consider a probabilistic user behavior
model where users can refuse the offered service based on their capacity
to pay and the price quoted. As a first step, we consider a system which
delivers multimedia content on a First-Come-First-Served basis, and ana-
lyze pricing mechanisms which maximize the expectation of revenue. We
argue that charging a constant price based on the customers' capacities to
pay maximizes the expected revenue. Since the customers' capacities are
highly varying and not known beforehand, we develop an adaptive pric-
ing model and validate it using simulation. Our simulation results indicate
that the adaptive pricing scheme generates nearly the same revenue as the
theoretical expectation.

I. INTRODUCTION

Content delivery is the new mantra in the Internet. Multime-
dia traffic is likely to grow to constitute a very large chunk of
the overall Internet traffic. The sheer volume of data involved
makes content delivery a lucrative business proposition. Much
of the multimedia content distributed today is free, thus making
it immensely popular. Associating a price with the content may
significantly alter this trend. For instance, one may prefer to
get news updates in plain text than say, in rich video format, if
one has to pay a lot of money for the latter. In this way, pricing
provides the content provider leverage to control the system uti-
lization. A low price during off-peak hours may can attract cus-
tomers while a high price can reduce system load during peak
hours. Choosing the right price is thus of great importance for
the success of the enterprise.

While our ultimate goal is to control system utilization using
price, we would like to understand the causal effects of price.
Therefore, in this paper, we investigate the problem of pric-
ing at a content delivery server in the context of revenue gener-
ated. Under specific assumptions of user behavior and a system
model, we analyze pricing mechanisms which maximize expec-
tation of revenue. We use the term expectation in the statistical
sense, because the revenue generated depends on a probabilis-
tic user behavior model. To illustrate the probabilistic nature of
user behavior, let us consider an example. Consider a teenager
with $15 as pocket money at a video-game parlor. The latest
release of a hit video-game is very attractive to him, but whether
or not he chooses to play the game depends on the price asso-
ciated with the game and the money he has with him. He may
be very likely to play for $5, but not for $14. He may decide
to wait for another month when the game is not so new and the
price falls. There is a probability associated with his decision to
play based on the price and his capacity to pay. We can see a

direct correlation between the example described here and pur-
chasing content on the Internet. In general, the probability that a
customer buys the service is inversely proportional to the price
and directly proportional to his or her capacity to pay. We try to
capture this behavior in our work. Our work is based on a video-
on-demand server, but it is sufficiently general to be applied to
other forms of content.

Delivery of content depends on three factors—resource avail-
ability, customer capacity to pay and customer willingness to
pay. One would like to preferentially serve customers who can
and are willing to pay more for a service. To maximize revenue,
one would have to make an educated guess about a customer’s
capacity and his willingness to pay. In this paper, we analyze
pricing mechanisms under a Pareto distribution of customer ca-
pacity to pay. We also introduce a probabilistic model for user
willingness to pay the quoted price. We argue that charging
a constant price will maximize the expected revenue for any
user willingness model in which user willingness decays with
increasing price. We derive the constant price for the user will-
ingness models we use in this paper. Since, the parameters of
the Pareto distribution will not be known to the service provider,
we develop an adaptive pricing model which estimates these pa-
rameters. We show, using simulations, that revenue using the
adaptive pricing scheme matches closely with the expectation
of revenue, given the probabilistic customer willingness to pay.

The rest of the paper is organized as follows. We describe
our basic system model used in this paper in Section 2. We for-
mulate the theoretical expectation of revenue in Section 3. In
Section 4, we develop the adaptive pricing scheme. We vali-
date it using simulations in Section 5. We conclude the paper in
Section 6.

Il. SYSTEM MODEL

We consider a system where requests are satisfied if resources
are available and the customer agrees to pay the quoted price.
Resources are modeled as logical channels. Every request
which is satisfied occupies a channel for some finite amount of
time. For a video-on-demand server we can think of the chan-
nels as the number of movies that can be served simultaneously.
In this paper we do not focus on how the channel is allocated or
how an allocated channel is managed. These issues have been
treated in detail in earlier work [1], [2], [3], [4]. We mainly
focus on the interaction between the system and the customer
before a channel is allocated. The sequence of actions resulting
in content-delivery is depicted in Figure 1.

Economic theory has established that there are a large number
of customers with a small income and a very small number of
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Fig. 1. System Model

customers with very large income [5]. Any pricing scheme must
be cognizant of this distribution. Currently, two probability dis-
tribution models — Pareto and log-normal are used to represent
the distribution of incomes. In this paper, we use the Pareto
distribution. Every customer has the capacity to pay based on a
Pareto distribution with two parameters—shape « and scale b. All
customers have capacities at least as large as b. The shape « de-
termines how the capacities are distributed. The larger the value
of «, the fewer the people with very large capacity to pay. The
Pareto density function is defined as f,(z) = w";”a ,forz > 0.
Figure 2 illustrates the Pareto density function for different val-
ues of shape «, and scale b = 67.
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Fig. 2. Pareto Density Function

To adequately describe the willingness of customers to pay,
we define a family of probability functions. Consider an arbi-
trary customer with capacity x. We denote his decision to pur-
chase the service, by the random variable Y which can take two
values-1 for accept and O for reject. As discussed in the ex-
ample in the previous section, the probability that the customer
accepts the price ¢, denoted by P{Y = 1 | ¢} depends on
his/her capacity x, and the price 1.

In this paper, we work with a simple model, where P{Y =1 |
¥} is defined as shown in Equation 1. By varying the parameter
4, we can make the willingness as elastic as desired. The higher
the value of §, the more willing are customers to spend money.
We show three different willingness models for a customer hav-
ing capacity 100, with § values 1, 2, 3 respectively in Figure 3.
As can be seen, the model with § = 3 makes the customer much
more willing to spend money than in the case of the other two
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models. In this paper, we make a simplifying assumption that
all customers will conform to one single model (as opposed to
different customers obeying models with different values for §).
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In this section, we discuss the dynamics of the user capacity
model and user willingness model and how it affects revenue.
Intuitively, if we do not know how much customers are capable
or willing to pay, it makes sense to charge a constant amount of
money from each customer. This is because we have no means
of predicting which customer to charge a high price and which
a lower price. By choosing a constant price we maximize the
chances that they accept. We have proven this intuition correct
using probability theory. We state the following theorems (with-
out proof owing to reasons of space):

Theorem 1: If shape parameter o > 1 (i.e., a finite mean for
the Pareto distribution exists), willingness P{Y = 1 | ¢} de-
creases monotonically with respect to ¢ and tends to 0 as ¢ ap-
proaches oo, then the expectation of revenue, E [] is maximum
when ) is a constant.

Theorem 2: For the user willingness defined in Equation 1,
the expectation of the variable Y given price ¢, E[Y | 4] is as
follows:

1—%6(%)6 . 0<¢<bh
a%é(ﬁ)a , p>b

Theorem 3: For the user willingness defined in Equation 1,
the expectation of revenue, E[v], is maximum when the price
1

E[Y | 4] = )

Vmaz = [ﬁ] ° b, The expectation of Y given price 1.,z IS
_d

o+1"
According to Theorem 1, the content provider should charge

a flat rate to maximize revenue for the system model used in this
paper. Theorem 2 gives an estimate on the mean rate at which
customers accept a quoted price . Theorem 2 tells us that the
mean rate of acceptance is at least a%a if the price is less than

b, and at most -2 if the price is greater than b. Theorem 3
suggests what price should be charged to maximize revenue.



IV. ADAPTIVE PRICING SCHEME

The theory developed in the previous section tells us what
price to charge to maximize the expected revenue. However, the
price is dependent on the Pareto distribution parameters—shape
«, and scale b and the willingness elasticity parameter 6. These
parameters will not be known to the content provider. More-
over, they may not even be observable, because a customer will
not disclose his capacity to pay. The only observable event, is
the customer's acceptance of the quoted price (denoted by the
binary variable ).

We have developed an adaptive pricing algorithm that learns
from the rate at which customers accept a given price. We use
the equations developed in Theorems 2 and 3 to relate the rate
of acceptance and the price charged. There are three unknown
variables, «, b and § and only one observable event, Y. Hence,
we must assume some reasonable value for two of the unknowns
to be able to predict the third. Since « is typically greater than
1 for income distributions[6], we assume one such value for a.
We shall show later that mis-estimating « does not significantly
alter our results. We now have to assume some reasonable value
for one other unknown. Instead of assigning a single estimate we
identify a set of possible values and then compute the other un-
known. The parameter that we choose to identify a set for is the
willingness elasticity parameter, §. We choose the set A, con-
sisting of feasible values of 4, such that it covers a wide range
of elasticity of willingness. For instance, if we constrain § to
belong to the set {0.7, 1.0, 1.3, 1.6, 2.0, 2.4, 2.7, 3.0, 3.4, 3.8},
any actual value of willingness elasticity can be approximated to
one of the elements in the set. Now, the problem of prediction is
slightly more tractable.

Our algorithm adapts after observing a round of requests.
Each round consists of 100 customer requests. A constant price
1) is charged in each round. This allows us to observe the rate of
acceptance for price 4. This observed rate is then equated to the
formula for E[Y | ¢] derived in Theorem 2. For each feasible
value of elasticity 4, (i.e., elements of set A), we compute a pos-
sible value for b. We choose the appropriate equation to use from
Equation 2 based on whether or not the observed rate of accep-
tance is greater or less than a%a Once we have a set of feasible
values for b, we perform one more round of experiments. We
choose an arbitrary price and compute the expected rate of ac-
ceptance for each of the feasible values of b. After this second
round, we compute which feasible value of b most closely pre-
dicted the observed acceptance rate. We use that value for b, and
the corresponding § in Theorem 3 to get the price to be charged
in the next round. The algorithm is presented in Figure 1V.

V. VALIDATION

In this section, we validate the adaptive pricing scheme de-
scribed in the previous section using simulations. We have im-
plemented a simulator to model the content delivery system.
The following is a list of parameters that we used for our analy-
sis.

« System Capacity: This measures the number of simultane-
ous streams that can be served. We performed simulations
with 500 logical channels.

1. Choose an arbitrary price 1. and a value for

2. Choose a set of elasticity values A = {41, ..., 6, }

3. For the next 100 arrivals charge v¢.

4. Compute the observed acceptance rate po.

5. For each §; € A, compute scale b; using Theorem 2.

6. Choose another arbitrary price 1.

7. For each §; € A, compute expected acceptance rate
for price v using scale b; and Theorem 2.

8.k« 1

9. Repeat forever

10. For the next 100 requests, charge a price v,

11. Compute the acceptance rate py.

12. For each §; € A, compute scale b; using Theorem 2.

13. Compare the acceptance rates predicted in round k — 1
with the observed acceptance rate py .

14. Identify the dop¢ Whose predicted acceptance rate

most closely matches the observed acceptance rate pg.
Let bop¢ be the scale computed in this round using dopt.
15. Set price 941 USING dopt, bopt and Theorem 3
16. For each §; € A, compute expected acceptance rate
for price 11 using scale b; and Theorem 2.
17. k+—k+1
18. End loop

Fig. 4. Our adaptive pricing algorithm

« Playout Duration: The playout duration is the amount of
time for which a logical channel is occupied for serving
some request. For the results presented in this paper, we
assume a duration chosen from a uniform distribution be-
tween 90 and 110 minutes.

« Channel Allocation Policy: We use a FCFS policy to al-
locate channels. Requests arriving when there are no free
channels are rejected. There is no waiting queue.

« Request Arrival Pattern: A Poisson arrival process is
simulated.

« Customer Capacity: This refers to the amount of money
the customer can pay. In this paper, the capacities of indi-
vidual customers are chosen from a Pareto distribution with
scale 67 and shape 3.

« Accounting Policy: Each customer is charged a price sug-
gested by the adaptive scheme. If the customer agrees to
the price a channel is allocated.

The system capacity, the request arrival rate and the playout
duration contribute to the system load and hence affect availabil-
ity of resources. Our main interest though is the predictive ca-
pability of our algorithm, which is largely independent of these
parameters'. Hence, we choose some constant values or ranges
for these, and do not vary them in our simulations. The adaptive
algorithm critically depends on the value of o that we assume
and the set A we choose. We investigate the impact of assum-
ing a wrong value for o and show that the revenue earned is
not affected even for highly erroneous assumptions for a. We
choose only one representative Pareto distribution of capacities
for our simulation. This is because of two reasons. First, the
actual shape of the distribution does not affect the results. It
is the relative error between the assumed and actual values that
will affect the simulation results. Second, the actual value of b
is more related to the service being sold and its perceived value.

LA very high arrival rate would impact the maximum revenue that can be
earned. However, we do not focus on this case in this paper.



Hence it is largely independent of our prediction algorithm.

Let A be the arrival rate, n the number of channels
and d, the mean playout duration.  Then, using The-
orem 3, the expected maximum revenue over time ¢ is

1
nt oAt atd | ° . i
70§01 (5+1)a] b. We shall use this as our base

line for comparing our simulation results.

We present results to 1) validate Theorems 2 and 3, 2) show
that a wrong assumption of o does not affect results and 3) show
that the algorithm is able to generate nearly the predicted rev-
enue for a wide range of willingness elasticity.
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Fig. 5. Predicted and Actual Revenue

We ran numerous simulations to establish that Theorem 2
presents the expectation of the rate of acceptance. We show a
plot of one such set of simulations with 500 channels, an arrival
rate of 6 per minute, a mean play-out duration of 100 minutes
and varying degrees of willingness elasticity. In this simulation,
the content provider is assumed to have full knowledge of «, b
and 4. The system charges the constant price suggested by The-
orem 3. Note that the expectation of Y presented in Theorem 3
is actually derived from Equation 2 in Theorem 2 by substituting
the value for 4,,4,. Figure 5 plots the revenue derived above as
well as the actual revenue earned in the simulation. The duration
of simulation was one day(simulated time). As can be seen, the
actual revenue earned very closely matches the predicted rev-
enue. The actual revenue earned is slightly less than the pre-
dicted revenue because some requests were rejected due to lack
of resources when all channels were occupied. The predicted
revenue assumes infinite resources. Figure 5 also illustrates one
instance of a set of simulations to validate Theorem 3. Using
Theorem 3, for 6=1.8, =3 and b=67, the expectation of rev-

enue is maximum when we charge a price of 49.1. We ran a set
of simulations, charging a constant but different price in each of
them. The ratio of revenue earned to the theoretically predicted
maximum revenue is plotted with respect to the price charged
in each simulation. As can be seen, the ratio is maximum and
nearly 1.0 for price around 49.

An interesting consequence of Theorem 2, is its impact
on system utilization. The system utilization given by p =

min{1.0, w}, is dependent on the price and the elas-
ticity parameter §. Figure 6 plots the predicted utilization and
observed utilization, for the second set of simulations shown in
Figure 5. The observed utilization is the fraction of simulated
time for which the channels were occupied. As expected, the ob-
served utilization closely matches the predicted utilization. Also
of interest if the tradeoff between utilization and revenue. If user
behavior were not probabilistic, one would expect increased rev-
enue with increased utilization. This clearly is not the case with
probabilistic user behavior.
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To validate the adaptive algorithm, we compare the revenue
earned by our algorithm with the revenue earned by a prescient
algorithm which knows the correct values for all three parame-
ters a, b and § and uses Theorem 3. We also compare it with the
predicted maximum revenue. To show that a wrong assumption
of a does not affect revenue, we ran simulations for different
assumptions of «, (the actual value was 3). For each assumed
value of «, we ran a range of simulations with different values
for 6. The range of values of § that we used was different from
the set A which we use in the adaptive algorithm. For each such
set of simulations, we found the average of the ratio of revenue
earned to the predicted maximum. The arrival rate, system ca-
pacity and mean play-out duration were kept constant as in the
earlier simulations. Figure 7 plots this average ratio for differ-
ent assumed values of .. The average ratio is uniformly around
0.88 irrespective of the assumed value of .. The prescient al-
gorithm has a ratio of 0.94. Note that the prescient algorithm
does not need to make any assumptions as it knows all the val-
ues beforehand. This plot illustrates that 1) Wrong assumptions
about « do not affect results and 2) the adaptive algorithm earns
a revenue which is very close to the maximum possible.
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Figure 7, shows one representative plot (o was assumed to be
3.5 for this plot) from a set of simulations where we assumed
some value for « and varied the willingness elasticity 4. Since,
the maximum predicted revenue varies with §, we again sum-
marize the results using the ratio of revenue earned to predicted
maximum. The corresponding ratio for the prescient algorithm
is also shown. The adaptive algorithm clearly generates revenue
very close to that generated by the prescient algorithm as well
as to the predicted maximum.

Though we performed simulations to study the impact of the
starting value 19, we are unable to show any representative plots
due to lack of space. We found that the starting value only influ-
ences convergence time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we focussed on pricing models for a content
delivery system. We introduced the idea of probabilistic user
behavior and analyzed its impact on revenue. We developed a
theoretical framework for maximizing revenue and introduced
an adaptive pricing scheme based on it. We validated the the-
oretical framework and also showed that, for the system model
assumed, the adaptive pricing scheme generates revenue very
close to the maximum possible.

Our future work is to focus on using price as an effective tool
for content delivery management. An interesting application of

Theorem 2, which relates price and acceptance rate, is to use
price to control system utilization. For instance, price can be
used to attract peak-hour customers to purchase the service dur-
ing off-peak hours. Theorem 2 provides the tool for achieving
this. An eventual goal of our work is to allow customer and
provider to negotiate the price. Theorem 3 provides a baseline
for controlling the negotiation. The system model used in this
paper is simplistic and our work but a first step. The impact of
batching, content popularity, and temporal changes in user be-
havior need to be studied in greater detail.
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