A FRAMEWORK FOR CREATING CUSTOMIZED MULTI-MODAL
INTERFACES FOR XML DOCUMENTS

Sami Rollins

Department of Computer Science
University of California at Santa Barbara
Santa Barbara, CA, USA, 93106
srollins@cs.ucsb.edu

ABSTRACT

The eXtensible Markup Language(XML) is emerging as
a new way to store and communicate data. Even though
its primary application is as the future of the World Wide
Web, it can be used in a variety of situations to structure
electronic data. As XML becomes ubiquitous, there is a
need to develop tools to allow users to view, navigate, and
modify the underlying XML data via a high-level, multi-
modal interface. Moreover, because XML can be used in a
variety of situations, the tools must allow a user to access
the data via non-traditional interfaces. The web, eCom-
merce, and digital classrooms are all possible applications
for XML. This paper presents a framework for develop-
ing multi-modal tools to view, navigate, and modify XML
structures.

1. MOTIVATION

XML[3] is a powerful language that enables a user to store
and communicate semi-structured data. In addition to be-
ing the future of the World Wide Web[2], XML has the po-
tential for use in distance learning[4] as well as business-to-
business, eCommerce applications[1, 7]. As XML becomes
ubiquitous, there is a call to allow users to receive XML
data in different output modes as well as issue directives
to navigate the data using different input modes. Circum-
stance as well as preference may restrict the input or output
mode choices available. For example, a user might simply
want to have a pictorial view of the data, or the user might
be a child who cannot yet read a textual view of the data.

Currently, the only way to view an XML document
is textually. XML programmers use basic text editors to
view and modify XML documents. Some browsers process
XML[5], however they still only present the same textual
view that you would see in a text editor. There are specific
XML editors[8, 9, 10], but first, those tools focus on XML
modification, and second they still only present a text-based
view of the XML document.

Languages like SMIL[6] are being developed with the
goal of allowing a user to specify a multi-modal presenta-
tion using XML. Our system takes the opposite approach.
Our aim was to develop a system that would automatically
create a multi-modal presentation of any XML document.
Moreover, we wanted to design our system such that the in-
put and output modes of the engine could be customized by

Neel Sundaresan

IBM Almaden Research Center
650 Harry Rd.
San Jose, CA, USA, 95120

neel@almaden.ibm.com

the user, therefore avoiding the overhead of having a static
system with multiple different concurrent input and output
modes.

Section two of this paper presents the design of our
system that we call the MakerFactory. Section three is a
detailed discussion of the user customization facilities we
provide to the user while section four focuses on the ap-
plications for which our system is well suited. The paper
concludes in section five.

2. DESIGN OF THE MAKERFACTORY

The MakerFactory is designed as an infrastructure for au-
tomatically creating customized interfaces for XML docu-
ments based upon a pre-defined XML schema. The schema
provides us with semantic information about the document
itself. It contains cues such as the size and depth of a docu-
ment conforming to the given schema. By extracting those
cues from the schema definition, we can build a smarter
rendering system.

Generated Components

Component|
‘s / 1
-— Step 1:
Theschemais \ . [Component
\ processed based 2
upon the input
components. B Comgonmt
“
Step 2: The underlying "

document is rendered
based upon the chosen
generated components.

Figure 1: The MakerFactory operates in two stages. First,
a set of code-generation components is chosen and fed into
the engine. The result is a set of generated classes that can
be invoked in step two to present a rendering to the user.

The design itself is two-fold as shown in figure 1. In

the first phase, the user chooses a series of customization
components from the library provided. Each component is
designed to provide the user with a different input/output
mode. For example, one component may allow the user to
drag and drop a pictorial view of the XML while another
component may allow the user to view and edit a document
via a speech-based interface. Each component analyzes the
schema itself and generates a unique set of classes that will
provide the given input and output mode for a document
with the specified schema.

The second phase is the run-time phase. At run-time,
the user chooses which generated classes should be used
for the given situation. The rendering system invokes all
of the specified classes and provides synchronized access to
the XML tree. Each component will have the same view
of the underlying structure, however the interpretation of
that view that the component presents to the user varies.
It is the job of each component to present the information
to the user using a different mode of output and to listen
for user input using a different mode of input from all other
such components.

2.1. Phase 1: Code-Generation

Because each component chosen in the code-generation phase
is responsible for making a set of classes to provide a specific
interpretation of the tree, we call these components Makers.
Each Maker is responsible for a single input/output mode.
By designing the system is such a modular way, we avoid in-
curring the overhead of undesired modes of input or output.
For example, the user who does not have access to a moni-
tor does not invoke any visual modes of output. Therefore,
the system does not incur the overhead of rendering video
or complex images etc.

Given a node from the Schema, the Maker first deter-
mines how the node should be displayed to the user. For
example, a TextMaker, that is to say a Maker that presents
a textual view of the document to the user, might conclude
that to render a node it simply prints the tag name of the
node to standard output while a PictureMaker, a Maker
that presents a pictorial view of the document, might con-
clude that the rendering of a node requires searching an
image database for an image to match the tag name of the
node. If it finds such an image it displays it on the screen.

The Maker then decides the type of input that the user
must supply to direct navigation. A SpeechMaker might
decide that a user may ask for any of the node’s children
by speaking the tag name while a TextMaker might decide
that the user can edit a text field containing the tag name
and the result will be the new tag name of the node.

The result of the Maker’s analysis is a set of Java classes.
The set of classes should mediate the communication be-
tween the user and the underlying XML structure, there-
fore the classes should minimally implement our Mediator
interface. At run-time, a set of Mediators is chosen by the
user and invoked.

An example Maker is shown in figure 2. In this example,
the TextualEditorMaker creates a text-based interface for
the user. The user can modify the underlying tree by filling
in the appropriate text fields.

XML Schema

TextualEditorMaker | *
<!IELEMENT Name (#PCDATA)>

<IELEMENT Phone(#PCDATA)>

<IELEMENT Email (#PCDATA)>

‘ Name H John Doe ‘

| Phone|| (408)555-1212 |

Email doe@@(ampls cod

Figure 2: The schema is analyzed by the Maker and a set
of Java classes is produced that mediates communication
between the user and the underlying tree structure. For ex-
ample, each node in the tree might have an associated text
field in a textual editor. The user can edit each text field
to change the tag name of the elements in the underlying
tree.

2.2. Phase 2: Run-time Rendering

At run-time, the user selects a series of Mediators to be
invoked. Each Mediator is selected based upon both user
preference as well as any restrictions imposed by the run-
time environment. For example, if the user is accessing the
XML document with a cellular phone, it is likely that the
user will only choose auditory Mediators, however, if the
user is using a traditional keyboard and monitor, the user
may want to hear and see the document choosing both an
auditory Mediator and a pictorial Mediator as seen in figure
3.

When the user issues a command understood by one
Mediator, that Mediator can change the tree view for the
remainder of the Mediators. There are two ways that the
tree view can change. First, the system implements the
concept of a cursor. Therefore, the tree view can change
based upon the location of the cursor. The current view is
simply the subtree rooted at the node currently pointed at
by the cursor. Second, the Mediator can actually change
the contents of the tree. Therefore, if a Mediator changes
the tag name of the current node, the rest of the Mediators
should update their view to reflect the change.

3. CUSTOMIZING THE OUTPUT

One benefit of our system is that it provides three different
levels if customization. By nature, the schema analysis of
the code-generation phase provides one level of customiza-
tion. We automatically exploit the underlying semantic in-
formation contained in a schema specification. Also, the
user chooses the components that are invoked at run-time.
This keeps the user from incurring the overhead of run-
ning components that cannot be used. Finally, the user

/

N

Underlying Tree
S .

|Pictorial Mediator | | Auditory Mediator
LW “Element Apple with children
}L)/// ﬁ Banana and and Corn with

rﬁ/ child Dog.”

Figure 3: The same underlying XML tree structure may
have multiple different representations. An auditory Me-
diator speaks the tag names of the nodes while a pictorial
Mediator searches a database to find images that represent
the information contained in the nodes.

may specify a series of customization rules during the code-
generation phase. These rules are analyzed along with the
schema to produce the run-time Mediator. These rules are
specified in XML and are designed to be simple for the user
to construct. Therefore, the user can control what the sys-
tem will do with a given node without having to write one
line of code.

3.1. Customization Rules

By generating our rendering system based upon the schema
itself, we can exploit the inherent information contained
in the schema. However, the information contained there
may not be sufficient for a user who wishes to customize
the system even further. Therefore, we provide a high-
level rule specification language that is further refined by
each different type of Maker. Since the rule language is
specified in XML, we can describe its restrictions using an
XML DTD.

<!ELEMENT RenderRules(ElementRule|AttributeRule)+>
<!ELEMENT ElementRule (ElementRendering)+>
<'ATTLIST ElementRule
elementtid CDATA #REQUIRED>
<!ELEMENT ElementRendering (Render|Action)+>
<!ATTLIST ElementRendering
cond CDATA #IMPLIED>
<!ELEMENT Render EMPTY>
<!ATTLIST Render
depth (NONE | NODE_ONLY | CHILDREN_ONLY |
ATTRS_ONLY | NODE_CHILDREN|
NODE_ATTRS | CHILDREN_NODE |
CHILDREN_ATTRS|ATTRS_NODE|
ATTRS_CHILDREN |NODE_ATTRS_CHILDREN|
NODE_CHILDREN_ATTRS |
ATTRS_CHILDREN_NODE|
ATTRS_NODE_CHILDREN |

CHILDREN_NODE_ATTRS |
CHILDREN_ATTRS_NODE|NAME | VALUE |
NAME_VALUE |VALUE_NAME) °’NODE_ONLY’
cond CDATA #IMPLIED>
<!ELEMENT Action EMPTY>
<!'ATTLIST Action
classname CDATA #IMPLIED
ismodifier (TRUE|FALSE) °’FALSE’>
<!'ELEMENT AttributeRule (AttributeRendering)+>
<!'ATTLIST AttributeRule
attribteid CDATA #REQUIRED>
<!ELEMENT AttributeRendering (Render|Action)*>
<!ATTLIST AttributeRendering
cond CDATA #IMPLIED>

The user should provide an XML document conforming
to this schema during the code-generation phase. It is eas-
iest to explain the functions of each element and attribute
using an example.

<RenderRules>
<!-- Rule for all Name elements. -->
<ElementRule elementid=’’Name’’>
<ElementRendering cond=’’noMiddleName’’>
<!-- If there is no middle name, render
last name, then first name. —->
<Render depth=’’CHILDREN_ONLY’’
cond=’’isLast’’/>
<Render depth=’’CHILDREN_ONLY’’
cond=’’isFirst’’/>
</ElementRendering>
<ElementRendering cond=’’hasMiddleName’’>
<!-- If there is a middle name, render
first, middle, then last name. -->
<Render depth=’’CHILDREN_ONLY’’
cond=’’isFirst’’/>
<Render depth=’’CHILDREN_ONLY’’
cond=’’isMiddle’’/>
<Render depth=’’CHILDREN_ONLY’’
cond=’’isLast’’/>

</ElementRendering>
</ElementRule>
<!-- For all occupation attributes... -->
<AttributeRule attributeid=’’occupation’’>
<!-- If the occupation is ‘‘secretary’’,

then invoke the Java class to change
the value to Administrative
Assistant. -->

<AttributeRendering cond=’’isSecretary’’

ismodifier=’’TRUE’’>
<Action classname=’’changeToAdminAssit’’/>
</AttributeRendering>
</AttributeRule>
</RenderRules>

The ElementRule element specifies the rendering of ele-
ments with the tag name “Name”. First, the rendering en-
gine invokes the condition classes. The value of the cond at-
tribute should be the name of a Java class that implements

a UnaryPredicate interface. The UnaryPredicate should
take one argument, the node in question, and produce a
boolean value. In the first case, the condition should eval-
uate whether or not the name contains a middle name por-
tion. If so, the rendering engine will first render all children
of the name element that satisfy the condition that they
are last names, and then will render all children that sat-
isfy the first name condition. However, if the “Name” node
does contain a middle name, the children will be rendered
in the order first, middle, last.

The AttributeRule has a similar structure. In this case,
the AttributeRule applies to all nodes that have the name
“occupation”. If the value of the attribute meets the condi-
tion specified in “isSecretary”, the the Java class “change-
ToAdminAssit” will be instantiated and invoked. Since the
class is identified as a modifier of the tree, the underly-
ing structure should be changed when the invocation of the
class completes.

The rules are designed to give the user as much power
to specify the rendering as possible, but still use a high-level
specification language. Because these rules are designed to
be general and apply to any XML schema, a specific Maker
class is encourage to extend the specification.

4. APPLICATIONS - THE WEB AND BEYOND

The framework described has been implemented entirely in
Java using the IBM XML4J parser. We have focused mainly
on the SpeechMaker/Mediator, the component that pro-
vides the facility for speech-based input and output. We call
this component Audio XmL(AXL). AXL has been imple-
mented using the IBM Speech for Java implementation and
the ViaVoice synthesizing and recognizing engine. There
are many possible applications for such a framework. We
describe three possible application scenarios.

The most obvious application of the MakerFactory is
the World Wide Web[2]. As the web transitions to XML,
there is a call for browsing facilities that will allow users
to view the content that exists on the web. By providing
such a customizable system, we allow a user not only to ac-
cess the web, but to access the web through non-traditional
means. A user does not have to have access to a traditional
computer terminal in order to surf the web. More specifi-
cally, the MakerFactory can be used to allow voice access
to the web for print disabled people or people who simply
wish to browse the web using a cellular telephone.

Another application is a distance learning scenario. The
digital classroom is becoming a reality. Even now, students
bring laptop computers to lecture and attend a class from
a city 100 miles away from the lecture itself. By taking ad-
vantage of the technology that exists for students, lecturers
can provide a multimedia presentation to their students by
simply specifying their lectures in XML[4]. If every stu-
dent had a laptop with the XML version of the lecture,
the MakerFactory could render each node in the tree at the
appropriate point in the lecture. The input mode to deter-
mine tree traversal could be the instructor’s voice while the
output modes could include slides, pointers to relevant web
pages, even videos. This would allow the students many dif-
ferent views of the material presented and hence, a greater
understanding of the material.

Finally, as commerce becomes eCommerce, XML is step-
ping in as the standard way to communicate Business-2-
Business[1, 7]. However, as long as human intervention is
required at any step of the way, systems to view and modify
the XML documents being sent from one business to an-
other are imperative. The MakerFactory not only provides
the ability to access that data, it provides the customiza-
tion facilities needed to be able to filter the XML data. A
secretary creating an order might require a very different
view of the XML document than a computer professional
stepping in to cancel an erroneous order. Therefore, each
person that must see the XML document invokes a differ-
ent set of Mediators when running the MakerFactory. Two
people can see the same document, using the same render-
ing system, but still only see the information the relevant
information at any given time.

5. CONCLUSION

XML is becoming ubiquitous. It has implications in many
different scenarios. At this point, the only systems available
for viewing, modifying and navigating XML documents are
text-based and present a limited view of the data itself. We
have developed a framework that extends XML interaction
and representation to include an extensible set of input and
output modes. Our system is completely customizable al-
lowing the user to choose the view of the document that
should be presented as well as the method of input the
user should employ to change that view. This not only
has implications for web-related applications, it applies to
multimedia style and eCommerce style applications as well.
Such a system will become increasingly important as XML
is widely adopted as a standard means of data representa-
tion and communication.

6. REFERENCES

[1] corp.ariba.com http://www.ariba.com/corp/home/

2] J. Bosak. XML, Java, and
the future of the Web http://metalab.unc.edu/pub/sun-
info/standards/xml/why /xmlapps.htm

[3] Extensible Markup Lan-
guage (XML) 1.0 W3C Recommendation 10 February,
1998 http://www.w.org/TR/1998/REC-zml-19980210

[4] T. Ferrandez Development and Testing of a Standard-
ized Format for Distributed Learning Assessment and
Evaluation Using XML MS Thesis, University of Cen-
tral Florida, Orlando, Florida, Fall 1998.

[5] J. Luh With Several
Specs Complete, XML Enters Widespread Development
http://www.internetworld.com /print/1999/01/04/-
webdev/19990104-several.html

[6] Synchronized Multimedia Integration Language (SMIL)
1.0 Specification http://www.w3.org/TR/REC-smil/

[7] webMethods hitp://www.webmethods.com/

[8] J. Murray Conquering XML with Xeena http://www-
4.ibm.com/software/developer/library /xeenatech.html

[9] XMLPro http://www.vervet.com/

[10] XMLSpy http://www.zmlspy.com/

