Supporting Multicast Management Using the
Multicast Reachability Monitor (MRM) Protocol

Kevin C. Almeroth Kamil Sarag Liming Wei
Dept of Computer Science Dept of Computer Science Siara Systems, Inc.
University of California University of California 300 Ferguson Drive
Santa Barbara, CA 93106 Santa Barbara, CA 93106 Mountain View, CA 94043
almeroth@cs.ucsb.edu ksarac@cs.ucsb.edu lwei@siara.com
May 10, 2000
Abstract

Network management for multicast traffic has become a key to the continued deployment of
multicast in the Internet. The lack of usable management tools is believed to be one of the bar-
riers to any substantial use of multicast in production Internet services. Because multicast is a
relatively new service, management tools either do not exist; do not provide the right functions;
or are too hard to use. As a result, there is a real need to develop new multicast management
solutions. In this paper we propose a new protocol that provides mechanisms to actively manage
and monitor multicast reachability and path quality. Our proposed protocol, called the Multi-
cast Reachability Monitor (MRM), can be used to send, receive, and collect statistics about a
multicast stream. This information can then be presented using novel visualization techniques.
The ultimate goal is to identify problems before they happen, as they are happening, and/or
to assist in troubleshooting efforts. From this perspective, MRM is designed to be used as a
building block for an integrated multicast network management tool set. In describing MRM,
we start by defining some important characteristics of a multicast management system. We
also describe the MRM protocol components. After discussing likely management scenarios, we
finish by describing the state of the MRM protocol and compare it to other available network
management platforms.

1 Introduction

Management of multicast traffic has become a key technical barrier to the further deployment of
multicast in the Internet. The lack of usable management tools is being listed among the reasons
why there has not been more rapid deployment and use of multicast[1]. For sake of completeness,
other barriers that have been listed include the relative instability of multicast routing protocols,
the lack of substantive experience among network engineers, and the “chicken-and-egg” problem
of needing a true “killer application”. However, as most of these are not technical problems but
administrative and deployment issues, they are less interesting to researchers. Furthermore, in
many cases time will solve these problems. There are now several companies who are developing
a wide variety of Internet services on top of multicast communication. The focus of our work is
to develop techniques to support the robust deployment of multicast through multicast-capable

network management techniques and tools.

Because multicast is a relatively new service in the history of networking, many of the existing
tools have been developed specifically to assist with debugging new protocols. This has impacted

the existing techniques and tools in a number of ways. These include:

e Those who have developed tools have only focused on support for very specific protocol
functions. Instead of focusing on tools that support traditional network management services
like fault isolation and detection, tools help experts configure networks and verify protocol
operation.

e When Network Operations Center (NOC) personnel attempt to use the few existing tools,
they find them hard to use and insufficient for traditional network management. The reason
is not because gathering statistics is a particularly difficult task, but more because the data
that is collected is difficult to analyze.

e For multicast, like any new technology, there exists a lack of widespread understanding and
expertise. NOC personnel tend to have a broad range of knowledge instead of expertise
in a few areas. As a result, managing multicast traffic requires necessary mechanisms to
provide support for management functions and it requires easy-to-understand and easy-to-
use management tools implemented on top of these mechanisms.

From a management point-of-view, successfully deploying multicast requires the ability to have

confidence that the network is working in a correct and predictable manner. This requires mecha-

nisms to monitor and verify successful multicast data transmission within and between multicast-
enabled domains. Currently available management tools are not able to perform this reachability
monitoring task in a scalable way|[2]. There is a need for a monitoring system for multicast reach-
ability both in intra-domain and inter-domain environments. While there are obviously a number

of management issues, multicast reachability is the focus of this paper.

In this paper, we propose a new protocol to monitor multicast reachability within and between
multicast-enabled domains. Our proposed protocol, called the Multicast Reachability Monitor
(MRM) protocol, offers a new paradigm for collecting data about the availability and quality of
multicast traffic carried in a network. MRM facilitates multicast network management by providing
an underlying collection mechanism for data necessary to provision network management. More
specifically, MRM provides network managers with a mechanism to run multicast test sessions
between network devices and collect various statistics about data quality as seen by receivers.
Moreover, its design enables MRM to be used in conjunction with other available management
tools. From this perspective, the MRM protocol can be used as a building block for an integrated
multicast network management tool set. An important component of our work is satisfying the
“sufficient and necessary” condition for a new protocol. We show that other current multicast
management solutions do not provide necessary functionality and that MRM is sufficient to meet

our objectives for a new management protocol.

The remainder of this paper is organized as follows. Section 2 presents requirements for moni-
toring reachability in a multicast network. Section 3 describes the MRM protocol in detail. Section
4 discusses possible scenarios for MRM use. Section 5 compares MRM with some other related

work. The paper is concluded in Section 6.

2 Issues in Monitoring Multicast Reachability

While our focus in this paper is on reachability as an instance of a management function, we

believe it is necessary to comment generally on management. Because reachability monitoring will

be conducted in parallel with other management functions, support for reachability monitoring

should use similar mechanisms and provide a consistent interface.

In general, the goal of network management is to organize and highlight relevant information
about the network including topologies, configurations, data flow, performance statistics, and es-
pecially anomalies. This allows people without in-depth knowledge of a network’s configuration to
(1) monitor its operation, (2) easily identify problems when they occur, and (3) solve problems

based on the availability and presentation of relevant information.

Two types of management are relevant to our work: within an enterprise (intra-domain), and
inter-domain. Under ideal circumstances, management functions for an enterprise network should
be orchestrated from a NOC. The NOC provides a centralized facility to receive, process, and
display network status information. Even in the inter-domain case, monitoring and management
functions will be somewhat centralized. Data collection and analysis are typically coordinated at
a single site. However, any corrective measures will likely be distributed, i.e. performed at remote
sites. Specifically, problems will be fixed by personnel in the domain in which the problem has

occurred.

With this perspective in mind, we now turn our attention to developing a high-level set of re-
quirements for a management system. Again, our goal is to specifically deal only with reachability.
However, we also consider how it might be used to support other management operations. We
then describe MRM, and compare it to other existing solutions like the Simple Network Manage-
ment Protocol (SNMP), etc. In our opinion, some of the important requirements for a multicast

reachability monitoring architecture include the following:

e Intra- vs Inter-Domain Support: A multicast reachability monitoring system should
support both intra-domain and inter-domain monitoring. The two different scales have po-
tentially different functional requirements. For example, access to network devices in the
intra-domain is typically unlimited and devices are under the control of the NOC. Manage-
ment personnel will not only have full access to all devices but they will also be expected to
solve problems by changing parameters or configurations.

Reachability monitoring in the inter-domain is based on much more limited access to devices.
In some cases, access may be so limited that devices in the network cannot be used for
monitoring and only end hosts are available. As we will see, the potentially restricted access

to information drives other requirements for the reachability monitoring architecture. In
any case, the information that is made available can be very useful for confirming (a) that
problems do exist, and (b) that problems are located in a remote domain. Reachability
monitoring is a management function well suited for the inter-domain because it requires less
detailed information from connected domains.

Scalability: Scalability requires architecture bottlenecks—e.g. complexity, message overhead,
processing, etc.—to increase sub-linearly with (a) the number of monitoring devices, and (b)
the overall size of the network. A multicast reachability monitoring system should adopt
mechanisms to prevent unnecessary traffic on the network and excessive processing load on the
management station and on the participating nodes. One particularly important scalability
characteristic any monitoring system should have is the ability to control report implosion.
Implosion occurs when a centralized collection site is used and the system supports “alarms”,
i.e. asynchronous reports of error conditions. For example, while monitoring reachability in a
multicast tree, a failure of a critical link close to the source would likely cause many receivers
to generate reports. Too many reports would cause implosion or at least excessive load at
the collection site.

Security: Security is another important issue in reachability monitoring systems. There
is a set of requirements common to intra-domain and inter-domain systems alike, but there
are also additional issues for inter-domain monitoring. Network devices used in intra-domain
reachability monitoring tests are usually production components and should only be accessed
in a controlled manner by authorized personnel. These devices can usually be configured
to accept connections and/or service requests from management sites only. Communication
between management sites and these devices should be encrypted and/or authenticated to
prevent malicious attacks. For the inter-domain case, the potential for attacks is much greater.
In addition, security mechanisms need to be used to control how one domain uses devices in
another domain. Even NOC personnel who are open to cooperation will want tight control
over what kinds of tests local devices are requested to perform or participate in.

Since we have made a distinction between in-the-network devices and end hosts, it is worth
noting that there are different security requirements for these two classes of devices. Both
should have mechanisms in place to limit access by using access control lists. Furthermore,
end hosts used in inter-domain reachability monitoring tests should be protected against
excessive monitoring workloads. One distinction between in-the-network devices is that end
hosts may be set up by normal users (including researchers) and NOC personnel may not
need to be involved. In addition, significantly more processing power and flexibility may be
achieved with end hosts.

Extensibility: Extensibility deals with the issue of a system’s ability to support the collection
of new sets of data. SNMP offers a good model. The protocol does not specify what is collected
but rather specifies how data is collected. Additional specifications, called Management
Information Bases (MIBs)[3], give standards for what kinds of data is collected and how it is
organized. Similarly, reachability monitoring systems should support collection of additional
data sets and they should support using new test data formats where possible.

Device Flexibility: As briefly mentioned earlier, the reachability monitoring system should
support data transmission and reception functionality in different types of devices. Again,
SNMP offers a good model to follow. SNMP support is provided in almost all types of de-
vices from routers and switches to printers and peripherals. While such diverse support is
not needed for monitoring reachability, at least devices in-the-network and end hosts should

be supported. End hosts provide a good end-to-end view of reachability plus possibly addi-
tional statistics about stream quality. Support in the network provides additional sources of
information for fault isolation when problems are detected.

e Multicast Independence: In a multicast reachability monitoring system, successful com-
munication between a monitoring coordination site and participation sites, even in the pres-
ence of faults, is important. Reachability monitoring systems should not depend solely on
the availability of multicast for communicating control information. If multicast were used
as the only mechanism to provide control information exchanges, monitoring and reporting
mechanism may break and the effectiveness of monitoring jeopardized. Making the point
about non-reliance on multicast is important because it is a particularly effective mechanism
for achieving scalability. Several existing systems provide excellent functionality but only
when multicast is working properly[2].

3 The Multicast Reachability Monitor (MRM) Protocol

In this section, we describe our design for a new protocol to send and receive test multicast data
streams and to collect information about the quality of the stream. Our proposed protocol, called
the Multicast Reachability Monitor protocol, is designed largely based on the requirements de-
scribed in Section 2 and consideration for existing systems. MRM is designed to support basic

reachability monitoring plus provide “hooks” to other management systems and tools.

The functionality provided by MRM is the ability to have a centralized management station
configure test multicast sessions. These sessions include who the source(s) should be, what the
transmission rate should be, who the receiver(s) should be, and criteria for reporting results or
asynchronous alarms. A network manager can create test scenarios that monitor traffic conditions
for an almost unlimited set of scenarios. Generated traffic can be used to test basic reachability or
test end-to-end capacity. Tests can be conducted in advance of an event to confirm functionality or
during an event to monitor quality. Tests can be conducted frequently using a constantly changing
subset of network devices. The goal in this case would be to statistically test reachability for very

large networks. More detailed examples are described in Section 4.

Given that MRM has been designed in accordance with the requirements in Section 2, there
is a parallel set of specific design criteria. As such, the MRM design goals specifically include the

following;:

e MRM should provide close to real-time detection of reachability problems. This includes
some amount of fault avoidance as well as fault isolation once a problem is detected.

e MRM should have the ability to provide good network coverage. This suggests MRM func-
tionality should be available in both routers and end hosts.

e MRM should support scalability. This includes both the ability to adequately monitor a large
network, and the ability to handle the feedback generated by widespread error conditions.

e MRM needs good extensibility in terms of the protocol’s ability to collect varied and complete
sets of diagnostic data. The needs that exist and are designed for today should not limit the
protocol’s future use.

e MRM should have the ability to interact with other diagnostic tools. This includes the
ability to collect information using these tools and then incorporate it into the presentation
of network status. Because MRM does not provide presentation functionality, hooks need to
be provided for other visualization tools[4, 5].

e MRM must be flexible enough to support use in both an intra- and inter-domain environment.

e A sufficient level of security that protects MRM-capable devices from being controlled by non-
authorized personnel. Also, MRM-capable devices should be protected from being overloaded
by monitoring tests by authorized users.

The remainder of this section is dedicated to describing the MRM protocol in detail. The first
of two remaining sections is a description of MRM protocol features including system components,
scalability mechanisms, and functional interoperability. The second section contains a description
of MRM’s communication primitives. Communication between MRM components is described by

listing the MRM message types.

3.1 MRM Protocol Description

3.1.1 MRM Components

An MRM system consists of two types of components. First, an MRM manager that configures
tests, collects data, and presents information. Second, MRM agents that source or receiver test
traffic. There is one agent per device and the device can either be a router or an end host. Each
agent can run two type of processes, either a Test Sender (TS) or a Test Receiver (TR). A TS acts

as a traffic source and a TR receives, processes, and reports on the traffic it receives. A single device

running an MRM agent can act as a TS or TR for potentially many test sessions simultaneously.

Figure 1 shows a hierarchy of the MRM terminology.

MRM
Components

Real Mcast
Group Traffic

Test Test
Traffic Traffic

Figure 1: A hierarchy of MRM terminology.

An MRM test has four basic steps. First, the MRM manager sets up the test scenario. Second,
the TSs send traffic to the TRs. Third, the TRs generate reports and send them to the MRM
manager. And fourth, the MRM manager processes the reports. These four steps are shown in

Figure 2 and described in more detail below.

1. An MRM manager instantiates a test scenario based on parameters from a network engineer.
The MRM manager initiates configuration requests to the MRM agents and assigns the roles
of TSs and TRs. The MRM manager informs the TSs of the quantity and duration of
traffic to generate and informs the TRs of the types of reports to generate. Access rights to
MRM agents can be controlled using access lists, and MRM agents can use the IP Security
Authentication Header[6] with HMAC-MD5 transformation as the standard authentication
algorithm([7].

2. TS(s) generate test traffic. In the case where an MRM scenario is monitoring real group traffic
there may be no TSs. TRs will monitor whatever traffic they are configured to receive. The
one dependency between TSs and TRs is that the TRs must understand the transport and
application layer packet headers used by TSs or the real traffic source. In the initial protocol
design, the RTPv2 packet header[8] is used. This includes both traffic generation as well as

Step 3: TR(s) Monitor
Group Transmission

Step 2: TS
Transmits

Step 1: Mgr Configures Step4: Mgr Collects and

TS(s) and TR(S) Displays TR Reports
Manager =—=Agent
O Router @ End-host ~ ----- Coman?unication]

Figure 2: The architecture of an MRM system including message flow

TR status report messages. This allows re-use of existing RTP-based reception mechanisms
and provides interoperability with existing RTP-based tools.

There are a number of additional data types which would prove useful including burst error
patterns, long term loss statistics, one-way delay measurements, group fan-out, etc. Devel-
opment of extended RTP headers is underway[9]. In some cases, MRM might even want to
collect and report data by setting SNMP MIB variables. The challenge is to minimize the
impact of requiring the router to collect additional data while maximizing the value of the
data itself. Utilizing different capabilities in routers and end hosts, specific functions can be
tailored to specific types of devices. For example, end hosts can collect and store information
about the arrival of each packet. Our assumption is that much more refined collection and
processing can be done in an end host than can be done on a router.

Finally, MRM agents need to have the ability to accept or deny incoming test requests based
on their current workload. This mechanism prevents network devices from becoming over-
loaded by monitoring operations. This is particularly important in the inter-domain environ-
ment.

3. TRs generate fault reports and/or status reports. Fault reports are similar to SNMP alarms
and are generated when a condition being monitored by the TR violates some threshold. For
example, if loss exceeds a certain percentage, then the TR would send a report to the MRM
manager. TRs may also send status reports but these are generated in response to explicit
MRM manager requests. In this way, the MRM manager can periodically test the liveness of
TRs. In the next section we describe mechanisms to achieve scalability in ways that SNMP
cannot.

4. The MRM manager receives and processes data from MRM agents. This function is not part
of the protocol description but it is of critical importance nonetheless. We expect systems
to be developed to take MRM reports and display the results. Or, we expect systems to be
developed which format the MRM reports so that they can be passed to existing visualization
tools[4, 5].

3.1.2 MRM Scalability

MRM suffers from potential scalability problems. The primary problem is that MRM has an asyn-
chronous response mechanism. Network engineers have the ability to configure test scenarios that
can potentially generate overwhelming amounts of feedback traffic. As with some reliable multicast
protocols, the source (in this case the MRM manager) is responsible for collecting acknowledgments
(reports) from many receivers (TRs). The potential for report implosion is significant, especially in
the case where TRs are configured to generate reports in response to threshold violations. However,
report implosion can also occur when a test is configured and very detailed statistics are requested

from large numbers of receivers.

Another application in the multicast world that must deal with report implosion is RTCP.
RTCP has its own scalability mechanisms (feedback back-off), but this technique is not wholly
applicable to MRM. The reason is that with RTCP, the more receivers that join a group, the more
infrequent the feedback. For MRM, this may not be an option. A manager may simply want a

large amount of feedback, even if it increases the possibility of overload.

MRM'’s solution to the scalability problem is to utilize techniques from RTCP and from some
reliable multicast protocols. The basic lesson that reliable multicast protocol developers have
learned is that receivers can achieve reliability without having to send acknowledgments to the
source for every single packet[10]. For MRM, which scalability techniques are used will depend on
what the test scenario is and what the needs of the network manager are. Some of the techniques

available include the following:

1. Delayed feedback: The MRM manager assigns a pre-determined report-delay (as part of the
configuration design task) to each TR. Each TR upon detecting a fault, will randomly delay
the sending of its report based on the pre-set delay period. This would allow an MRM system

10

to monitor networks with up to thousands of systems without unreasonable compromises in
detection response times.

2. Report suppression: Each TR may be instructed to report the detected faults to a multicast
group address using feedback techniques similar to RTCP. Other TRs who hear information
similar to their own may suppress the delivery of their reports. However, one problem with
suppression is that it will prevent the MRM manager from learning a complete list of receivers
affected by a specific fault. Report aggregation is an alternative, but it requires additional
functionality in internal MRM agents.

3. Report aggregation: Report aggregation is a technique used successfully by reliable mul-
ticast protocols. The aggregation functionality can be provided by internal network devices
or by specially elected end hosts. Report aggregation is a potentially powerful tool for sum-
marizing relevant information at branch points in a multicast tree.

4. Non-realtime feedback: This is an alternative to event triggered reports. Non-realtime
feedback implies that an MRM agent stores reports for an extended period of time. If a
significant event negatively affects many members in a large group, some reports can be sent
immediately but most could be stored on the MRM agent host machine. When the MRM
manager is ready to collect the data it will send out poll messages—possibly even using an
ftp-style protocol if the log is large.

5. Beacon messages: MRM has a protocol service that allows an MRM components to com-
municate via multicast. The utility of this mechanism is somewhat limited because MRM
cannot rely on multicast as a reliable means of communication. Beacon messages are described
further in Section 3.2.

3.1.3 MRM Interoperability

MRM was designed, not to replace existing management tools and systems, but to work in con-
junction with them. From one point-of-view, an MRM manager is responsible for generating and
collecting MRM reports. From another, MRM may also be used by any other tool to help the
network manager understand multicast traffic behavior. Some examples of interoperability include
the following:

e An MRM manager may want to collect data from other management tools, e.g. mirace. The
MRM manager would send messages to MRM agents asking them to run tests using other
tools on behalf of the manager.

e MRM may be considered a tool and incorporated into a larger management frameworks. In
particular, work is underway to incorporate MRM into a tool called mmon[11] which is part of
OpenView. MRM could also be included in the Globally Distributed Troubleshooting (GDT)
protocol[12].

e MRM could have an SNMP MIB and populate it based on test results from a scenario
configured by the MRM manager. This provides yet another mechanism for making MRM
data available to network management personnel.

11

e A management application could provide a layer of abstraction for the MRM protocol. Instead
of requiring network engineers to configure scenarios, the management application would
generate generic scenarios. These scenarios would be customizable and could be stored and
run using the management application.

e As mentioned before, MRM could be used as an input source to end-user tools that perform
visualization and debugging assistance[4, 5].

3.2 MRM Messages

MRM functionality is based on the ability of an MRM manager to configure and interact with T'Ss

and TRs. This section describes the types of messages that flow during a typical MRM scenario.

Test_Sender_Requests (TSRs). TSRs cause an MRM agent to begin sourcing packets ac-
cording to the parameters in the TSR packet. TSR messages are sent using unicast UDP with
acknowledgments. Additional soft-state updates may be carried in beacon messages (see below).

A TSR packet contains the following information:

Duration of the test scenario

Inter-packet interval

Length of each test packet

Format of test packets, e.g. RTP/UDP, UDP, or some other format

Multicast address for the test group

Based on this information, a TS will start sending periodic test packets. The length and inter-

packet interval can be used in combination to generate streams of varying bandwidth.

Test_Receiver_Requests (TRRs). A TRR message is delivered using the same method as
TSRs (acknowledged UDP). A TRR can either be a request to become a TRR or it can be a
request to an existing TRR to return a status report. In either case, a TRR packet includes the
following information:

e The address of the group to be monitored

e A list of source addresses to record reception quality information for

12

A description of the threshold used to trigger fault reports/alarms

e The maximum delay to wait before generating fault reports. Typically the arrival of the first
test packet will start the collection process. However, if no packet arrives the TR needs a
catalyst to recognize that the test has started and no packets have arrived.

An interval over which to chose a random delay between when a fault is observed and when
a fault report is sent (backoff to prevent implosion)

The type of report to be returned, e.g. RTCP or some other format[9]

Test_Receiver_Status_ Reports (TRSRs). These reports are sent by the TRs to the MRM
manager, either in response to a status request or because of a threshold trigger. The initial design
is for status reports to use the RTP “receiver report (RR)” packet format. MRM is designed to be
extensible and to support more detailed reports. Several extended report headers are currently in

development but their format is not part of the MRM protocol[9].

MRM Beacon Messages. One mechanism that MRM has that provides partial scalability is
beacon messages. Beacon messages are sent periodically (recommended once every minute) by
the MRM manager to either a generic multicast group or a group specific to a particular test
scenario. The decision on which to use and why is explained below. All TSs and TRs join this
multicast group and listen for beacon messages. This beacon message contains a sequence number,
the authentication data, the elapsed time since the last beacon message, and any active TSRs and
TRRs for a particular scenario. The sequence number and elapsed time carried in a beacon message
can be used to verify MRM Manager liveness and to calculate reception quality from the MRM

manager. This beacon mechanism has three purposes:

1. Allows TSs and TRs to learn the liveness of the MRM manager

2. Allows the MRM manager to (unreliably) make large-scale changes to a scenario:
For example, an MRM manager can change the transmission rate for all sources, end a large-
scale test prematurely, etc. This function is unreliable because MRM does not depend on the
availability of multicast. Therefore, even if beacon messages are made reliable (which they
are not), there is no way to guarantee that every target receiver can actually get the message.

3. Provides a soft-state re-assert mechanism in small-scale testing environments:
A re-assert mechanism is useful in the case when network devices crash and then re-start.
However, the re-assert mechanism is limited to a small-scale testing environment because a

13

pre-configured multicast address must be used for the beacon group. In a large-scale test
there will likely be too much TS and TR state to send out in a beacon. We provide the
option of using a different beacon address per scenario but then a network device will not be

able to recover this address upon re-start.
An original protocol design component was to allow TSRs, TRRs, fault reports, or status
reports to be sent via multicast. This created a dependency on multicast which could affect MRM
operation. The solution is to make the use of beacon messages by the MRM manager optional.

However, MRM agents are required to respond to any multicast messages received. So while beacon

messages provide robustness they do not provide any critical functionality.

4 MRM Usage Scenarios

The basic concept of MRM is to allow a network manager to monitor multicast reachability and
stream quality at one or more receivers. The traffic can either be real traffic or can be artificially
generated trace packets. By allowing a network manager to arbitrarily place sources and receivers
throughout the network, important flexibility in monitoring functions can be supported. A network
manager can check the quality of the network links between any potential source and any potential
set of receivers. This check can be performed for existing groups during a real session or can be
performed in advance of an event using test traffic. The following four scenarios demonstrate more

fully the various ways in which MRM can be used.

Pre-Event Testing. One of the best examples of how MRM can be used is as a deployment ver-
ification test tool for on-location broadcasts. Examples include meetings or conferences, especially
those that periodically take place in venues around the world. Preceding the meeting, network
support staff install a terminal room and establish network connectivity. In some cases, setup
activities occur only days before the event. Verifying that multicast routing is working both into
and out of meeting rooms is a challenge. Ensuring that multicast can be received and is of accept-
able quality beyond the venue location is difficult. MRM could be used to (1) establish sources in

the local network, and (2) establish randomly located receivers around the world. Today this is

14

typically done by having one of the network support staff set up a test session and solicit feedback
from users. MRM would ease the process of testing deployment especially if there were a publicly

accessible/usable set of MRM agents.

Classic Fault Isolation. A second scenario well suited for MRM is classic fault isolation. Like
unicast routing, multicast routing problems can be very difficult to debug. But unlike unicast
routing, the additional complexities of providing one-to-many delivery can introduce problems that
are difficult to find. To date, a significant number of strategies, tools, and techniques have been
developed, built, and proposed[13, 14]. However, these attempts generally require a significant level
of multicast routing expertise and experience—characteristics not always found among NOC per-
sonnel. As a result, MRM is designed to offer a layer of abstraction between multicast reachability
monitoring and the intricacies of multicast routing. Pre-configured tests can be used to generically

test network reachability, and any problems can be further isolated using additional tools.

Session Monitoring. The two previous scenarios follow logically, from verifying multicast con-
nectivity to isolating any potential faults. The next scenario is monitoring of existing, active
sessions. Such groups will have a well-known multicast address, and might be exchanging group
membership information via RTCP reports or some other out-of-band mechanism. While RTCP is
a common solution in widespread use today, applications are increasingly not implementing group-
wide reporting mechanisms. In this case, other steps need to be taken to monitor quality. Even
if RTCP is used, the current standard does not allow flexibility in the amount of control traffic
allowed[8]. Furthermore, RTCP, especially the version built into application tools, may not support
all of the monitoring functionality desired. Specific monitoring tools, which only support debug-
ging functions and not application layer functions like image decoding, may be the only option for
reachability monitoring. Instead of using yet another technique/solution/tool, MRM provides a
consistent management model. MRM also provides a great deal of flexibility and extensibility; all

of which can be controlled from the NOC.

15

Fault Logging. In the case when session monitoring identifies the existence of a fault, a range
of logging functions may be required. At one extreme, the MRM manager may simply need to be
alerted when faults occur so that appropriate investigative measures can be taken. At the other
extreme, service contracts may depend on the provision of service with certain guarantees. Any
outage might need to be closely tracked. These two extremes again demonstrate the need for MRM
to be flexible. In particular, when faults need to be closely monitored and logged, a wide-scale
outage may itself cause a heavy load on the network. While scalability is an important goal, the
tradeoff is that less information about the problem is received. MRM supports scalability, but
the issue of when to make monitoring functions scalable and when to collect full statistics is an

important attribute.

5 Related Work

In this section, we look at four alternative mechanisms to perform reachability monitoring task:
sdr-monitor, SNMP, the NIMI Project, and GDT. In reality, SNMP and GDT actually provide
complementary functionality. However, we treat all four as alternatives as much as possible in
order to identify their strengths and weaknesses when compared to MRM. For each alternative, we

explain how it could be used to perform reachability monitoring.

Sdr-monitor. Sdr-monitor is a user-level tool for monitoring multicast reachability on a global
scale[15]. It uses sdr session announcements as a heartbeat mechanism for measuring reachability.
Sdr-monitor has a number of participants who periodically report their cached session announce-
ments to the sdr-monitor data collection site. An sdr-monitor manager then uses these reports
to build a web page displaying which sessions are visible to which participants. A session that is
not visible to a particular sdr-monitor participant is assumed to be an indication of a reachability

problem.

16

Even though sdr-monitor provides useful information about multicast reachability in the global
infrastructure, it has a number of problems inherent to its underlying data collection mechanism.
Using the sdr-monitor tool, we cannot monitor multicast reachability between two specifically tar-
geted sites. The monitoring that takes places is completely dependent on the currently participating
and session announcing sites. Participants can join and leave the monitoring effort as they wish.
In addition, sites start and stop sourcing session announcements as they wish. In summary, sdr-
monitor provides reachability information based on the existing session announcement mechanism.
Even though this monitoring is useful in a general sense, it does not provide a mechanism to perform
monitoring in a flexible way. In addition, sdr-monitor provides only binary information (reachable,
or not reachable) and cannot provide any information about the quality of data reception, e.g. loss,

jitter or delay information.

SNMP. SNMP is a standard protocol commonly used for network management by NOC per-
sonnel. It provides a simple mechanism for network managers to collect statistics from and affect
state in managed network devices. The type of management data gathered in network devices are
defined by MIBs. Reachability monitoring task can be performed using SNMP. The TS and TR
functionality can be implemented as MIBs and network devices can be configured to participate
in a monitoring test scenario using SNMP commands. Even though this looks like a practical
solution to our monitoring task, there are problems that make SNMP unsuitable. SNMP uses a
password mechanism in order to prevent unauthorized accesses to SNMP data in managed network
devices. Theoretically, managed devices can be configured to allow others to access SNMP data in
the devices (using community strings). However, traditionally most network managers do not allow
non-NOC personnel to access SNMP information in their devices. They configure network devices
to only accept SNMP requests from their own NOC personnel. This makes SNMP an intra-domain
management system only. Although this mechanism provides a perfect solution for reachability

monitoring within an autonomous system, it does not support wide-scale reachability monitoring

17

tasks. We believe support for inter-domain reachability monitoring is an important task—even for

NOC personnel.

The NIMI Project. Another alternative platform that can be used to provide multicast reach-
ability monitoring is the National Internet Measurement Infrastructure (NIMI) project[16, 17].
NIMI has been developed based on the need for a global Internet measurement infrastructure.
NIMI provides an infrastructure in which a collection of measurement probes cooperate to measure
the properties of Internet paths and clouds. NIMI is an active measurement system and is ex-
pected to generate its own test traffic. NIMI uses multiple NIMI daemons at end-points as the set
of measurement tools. From a reachability monitoring perspective, TS and TR functionality can
be implemented as NIMI modules that can be placed and operated within NIMI-enabled end hosts.
Even though this technique provides a very viable solution for end hosts, NIMI is not supported in
routers. Even though NIMI provides a mechanism to perform end host monitoring, we still would
need MRM for router-based test scenarios. Furthermore, NIMI is designed almost entirely for use
by researchers. This is little functionality that would be useful for management of commercial

network services.

GDT. GDT provides a mechanism to detect and report network problems across administrative
domains. In GDT, each domain has a number of expert modules which has one or more areas of
expertise. Expert modules in peer domains can contact each other and exchange problem reports
with the goal of alerting remote domains of problems that may or may not be located in the remote

network. GDT is designed as an application-layer inter-domain debugging coordination tool.

Any entity within a network may report a problem to an expert module. Expert modules then
apply known domain-specific tests to confirm or deny the existence of the problem. GDT does
not specify how to test or repair problems. It depends on locally available management systems
for these operations. After confirming a problem, an expert module generates new hypotheses

about potential causes of the problem and sends problem reports to other expert modules. If the

18

problem is believed to exist in another domain, the hypotheses will be sent to an expert module
in that domain. In this way, experts in peer administrative domains work together to locate
actual problem points. From a reachability monitoring perspective, GDT can be considered as a
higher level management architecture which expects to use other mechanisms (like MRM) to detect

reachability problems.

Using the set of requirements described in Section 2 we now present Table 5—a summary of how

well the various management systems support MRM-style multicast reachability monitoring.

6 Conclusions

In this paper we have attempted to address the problem of a lack of management tools for multicast,
specifically for the function of reachability monitoring. This deficiency exists because the tools in
use today do not meet the needs of traditional network management. The result is that there is a
significant need for easy-to-understand and easy-to-use multicast management tools. We proposed a
protocol that enables network managers to monitor the reachability and quality of multicast traffic.
The key to our protocol is its ability to configure test sources and receivers and create a wide range of
multicast group configurations. This flexibility allows a manager to run a variety of tests and collect
statistics about multicast data transmission. Based on this information, a network manager can
use other multicast management tools to detect and correct multicast related problems. From this
perspective, our protocol can be used as a building block for an integrated multicast management
system. In this paper we explained components of our protocol and described various scenarios
for its use. In addition, we discussed other management systems that offer minimal reachability

monitoring functionality.

19

Intra- and Inter-Domain Support

sdr-monitor

supports intra- and inter-domain monitoring

NIMI

supports intra- and inter-domain monitoring

SNMP typically supports only intra-domain monitoring
GDT supports primarily inter-domain communication
MRM supports intra- and inter-domain monitoring

Scalability

sdr-monitor

does not scale, heavy workload with many participants

NIMI

can employ mechanisms to prevent report implosion

SNMP limited scalability—alarm report filtering
GDT minor bottleneck for handling problems report to modules
MRM can employ multiple mechanisms to avoid bottlenecks

Security

sdr-monitor

no security provisions

NIMI

uses authentication and passwords to prevent abuses

SNMP strict security model limits access, especially in inter-domain case
GDT hooks to provide security
MRM authentication to control access and workload

Extensibility

sdr-monitor

limited, depends on session announcement mechanism

NIMI

possible to add new modules

SNMP only through definition of new MIBs
GDT possible to add new expert modules
MRM possible to support new collection types, especially in end hosts

Device Flexibility

sdr-monitor

end host support only

NIMI

end host support only

SNMP most network devices
GDT end host support only
MRM end host and router support

Table 1: Summary of how well existing systems meet reachability monitoring requirements.

20

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Diot, B. Lyles, B. Levine, and H. Kassem, “Requirements for the definition of new IP-
multicast services,” IEEE Network, January /February 2000.

K. Almeroth, “Managing TP multicast traffic: A first look at the issues, tools, and challenges.”
IP Multicast Initiative White Paper, August 1999.

J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Structure of management information
for version 2 of the simple network management protocol (SNMPv2).” Internet Engineering
Task Force (IETF), RFC 1902, January 1996.

P. Rajvaidya and K. Almeroth, “A scalable architecture for monitoring and visualizing multi-
cast statistics,” tech. rep., University of California—Santa Barbara, 2000.

B. Huffaker, E. Nemeth, and K. Claffy, “Otter: A general-purpose network visualization tool.,”
in INET, (San Jose, California, USA), June 1999.

K. Stephen and R. Atkinson, “IP authentication header.” Internet Engineering Task Force
(IETF), draft-ietf-ipsec-auth-header-*.txt, July 1998.

R. Rivest, “The MD5 message-digest algorithm.” Internet Engineering Task Force (IETF),
RFC 1321, April 1992.

H. Schulzrinne, S. Casner, R. Frederick, and J. V., “RTP: A transport protocol for real-time
applications.” Internet Engineering Task Force (IETF), RFC 1889, January 1996.

T. Friedman, R. Caceres, K. Almeroth, and K. Sarac, “Rtcp reporting extensions.” Internet
Engineering Task Force (IETF), draft-ietf-avt-rctp-report-extns-*.txt, March 2000.

K. Obraczka, “Multicast transport mechanisms: A survey and taxonomy,” IEEE Communi-
cations, vol. 36, January 1998.

R. Malpani and E. Perry, mmon: A multicast management tool using HP Open View, December
1999. Available from http://www.hpl.hp.com/mmon/.

D. Thaler, “Globally distributed troubleshooting (GDT): Protocol specification.” Internet En-
gineering Task Force (IETF), draft-thaler-gdt-*.txt, January 1997.

D. Thaler and B. Aboba, “Multicast debugging handbook.” Internet Engineering Task Force
(IETF), draft-ietf-mboned-mdh-*.txt, March 1997.

D. Massey and B. Fenner, “Fault detection in routing protocols,” in International Conference
on Network Protocols (ICNP), (Toronto, CANADA), November 1999.

K. Sarac and K. Almeroth, “Sdr-monitor: A global session monitoring tool,” tech. rep., Uni-
versity of California—Santa Barbara, March 2000. (submitted).

V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture for large-scale internet
measurement,” IEEE Communications, August 1998.

National Internet Measurement Infrastructure (NIMI) Project.
http://www.ncne.nlanr.net /nimi/.

21

