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Abstract— Multicast is a promising technique for mass
distribution of streaming media. However, the inherent
heterogeneity of the Internet poses several challenges. A
major challenge is to develop a congestion control mecha-
nism that is efficient, flezible (to administrative heterogene-
ity) and deployable. Many approaches using a layered encod-
ing scheme have been proposed to address this problem.
In parallel, many tools are being developed which provide
a snapshot of network internals. Of particular interest are
multicast topology discovery tools. The existence of such
tools motivates the possibility of using tree topology in-
formation for multicast congestion control. In this paper
we seek to understand the benefits of such a mechanism
and the challenges in its practical implementation. We
develop an algorithm, called TopoSense, which uses topol-
ogy information and layered streams to control congestion
within an administrative domain. Our algorithm presents
a new model for multicast congestion control as it does
not involve on-router computation as opposed to other ap-
proaches which require router support. We evaluate our
algorithm using ns, the network simulator. Our results
indicate that topology information is very useful in under-
standing the dynamics of multicast congestion and can be
used for efficient traffic management.
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I. INTRODUCTION

The Internet is seeing an explosive growth in the popu-
larity of streaming media traffic. Originally designed for
data transport, the Internet is severely constrained in han-
dling multimedia traffic. However, IP Multicast alleviates
the problem by enabling a source to send a single stream
to multiple recipients[1]. This yields many performance
improvements over the unicast model and conserves band-
width end-to-end.

However, the inherent heterogeneity in the structure
of the Internet poses a number of challenges that need
to be addressed before multicast can be used efficiently.
Differences in link bandwidth, temporal and geographical
variance in traffic density, and differences in administra-
tive policies are factors which make the Internet heteroge-
neous. In a multicast scenario, where there are multiple
receivers receiving the same stream, these factors exac-
erbate the issue of congestion control. The multimedia
stream must be multicast in such a manner so as to sat-
isfy varying requirements of the receivers and at the same
time avoid congesting the network. For instance, consider
two receivers, one on the same Ethernet as the source and
the other using a 56Kbps modem. A high data rate will
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congest the bottleneck link of the second receiver while
a low data rate would imply a poor quality of reception
for the first receiver even if (s)he has the resources to
receive better quality. To deal with such cases, use of
multiple multicast streams has been suggested[2]. Differ-
ent receivers with varying capabilities can subscribe to
different streams based on their capacity. The streams
can either be replicas with differing qualities or they can
be partitions of the original stream into “layers”. In the
layered model, each receiver subscribes to the base layer
and some enhancement layers.

Knowledge of multicast tree topology can be very use-
ful in congestion control [3]. We illustrate this using a
simple example (Figure 1). Assuming a layered multi-
cast model, receivers subscribe to a base layer and some
enhancement layers. Assume that layer 1 requires a band-
width of 32Kbps and every subsequent layer requires twice
the bandwidth required by the previous layer. Using the
topology in Figure 1, the receivers at nodes 3 and 4 can
hope to receive layers 1 and 1,2 respectively. Because,
the receivers may not be aware of their bottleneck band-
width, they may subscribe to more layers. Suppose, the
receiver at node 4 tries to subscribe to one more layer.
This will result in congestion at node 2 and hence losses
for both node 3 and node 4. A congestion control mech-
anism which is unaware of the topological relationship
between nodes 3 and 4, may take incorrect decisions to
control losses at node 3.

In this paper, we investigate the utility of topology-
information in controlling congestion. The approach we
suggest is unique in the sense that it does not build upon
any existing protocols. It combines the layered models,
which focus on congestion control, and topology discovery
tools which focus on network administration in a manner
that is flexible and easy to deploy. The most significant
aspect of our work is that it is designed for the application
layer and does not have special requirements other than
the existence of a tool which discovers the multicast tree
topology in the local domain. The architecture we de-
scribe focuses on local congestion control in independent
domains.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the architectural framework of our
algorithm and place it in the context of the current In-
ternet topology. In Section 3, we develop an algorithm
we call TopoSense and present the intuition behind it. In
Section 4, we evaluate this algorithm using the network



Fig. 1. A simple multicast tree topology.
Backbone
Tierl
1SPs
Tier2
1SPs L) Q
Tiern .

|sps© Q O

Fig. 2. The Tiered Structure of the Internet.

simulator ns and present simulation results. In Section 5,
we discuss the challenges in using topology information
effectively. We conclude the paper in Section 6.

II. MULTICAST TOPOLOGY AND TOPOSENSE
ARCHITECTURE: THE TIERED APPROACH

In its current state, the multicast-enabled Internet can
be represented as a tiered structure (Figure 2). The first
tier consists of national Internet Service Providers (ISPs),
the second tier of regional ISPs, the third local ISPs and
so on. All of the recipients (and possibly the source) are
connected to institutional ISPs. These institutional ISPs
are in turn served by ISPs higher up in the hierarchy. It is
reasonable to assume that owing to the higher volume of
traffic, the higher tiers have a larger bandwidth capacity
than those of the lower tiers. The link with the small-
est bandwidth capacity in the path from the source to
a receiver is called the bottleneck link for that receiver.
Owing to their smaller bandwidth capacity, the links in
the lower tiers are typically the bottlenecks. This is com-
monly referred to as the last mile problem. Congestion
control near the last mile of a low capacity recipient will
alleviate the problem locally, while leaving other high ca-
pacity recipients unaffected.

Our architecture is based on the challenge of solving
the bandwidth problem in the last mile. It exploits the
idea that bottlenecks lie deep in the tree and that disjoint
subtrees on the multicast tree do not affect each other as
long as their common ancestors have a high capacity. For
instance, in the example in Figure 1, the subtree rooted at
node 5 will be independent of the subtree rooted at node
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Fig. 3. Scalability using a hierarchical control model.

2. Our algorithm, TopoSense is built around this notion
of subtree independence. Our architecture uses multi-
ple controller agents, each concerned with one particu-
lar administrative domain. Each domain and controller
agent is unaware of the other controller agents’ existence.
These controller agents are application-level entities —
routers in the domain are unaware of their existence. Po-
tential recipients of multicast traffic register themselves
with the controller agent managing their domain. The
recipients periodically report loss information to the con-
troller agent. The controller agent also uses a topology
discovery tool to discover the topology of different multi-
cast sessions in that domain. Since the controller agent
is concerned only with the topology in its domain, dis-
covering the local tree topology efficiently may be more
tractable than discovering the entire tree topology. We
defer a discussion on this subject to later sections. The
controller agent uses the topology information along with
the loss reports to decide optimal subscription levels for
different recipients. It periodically transmits this infor-
mation to the recipients who then obey the suggestions.
Since the network is lossy, it is possible that suggestion
packets from the controller agent get lost. The recipients
can make unilateral decisions if they do not receive sug-
gestion packets for a long period of time. Our architecture
is illustrated in Figure 3. Controller agents can also be
very useful for billing customers based on multicast con-
tent delivered.

A very attractive feature of our architecture is that it
adds an element of scalability; congestion control can be
managed on sub-trees instead of on the whole tree. Sec-
ondly, it is highly flexible to administrative heterogeneity.
Administrative domains using TopoSense have the incen-
tive of local congestion control, but those choosing other-
wise do not have any disincentives either. Moreover, other
domains will not be affected by this decision. There is also
flexibility in the mechanism used for collecting topology
information. Our algorithm concerns itself only with the



information and not how it was acquired. This is of great
importance, given that the current Internet is highly het-
erogeneous. On the negative side, our architecture makes
sense only for long-lived multicast sessions. But, since
multimedia traffic is typically long-lived, this is a reason-
able trade off.

III. TOPOSENSE ALGORITHM

The TopoSense Algorithm works on a set of graphs rep-
resenting the multicast tree topologies and layers travers-
ing different parts of the controller agent’s domain. In
this section:

o A node refers to a node in the graphs maintained by
the controller agent

o A link refers to an edge in the graphs

o A multicast session refers to a set of layers being
transmitted on different multicast addresses

o A multicast session topology is the overlay of the mul-
ticast distribution tree for each layer of the session.

Since the layers are cumulative, i.e., a receiver getting
layer 4 must also receive layers 0 ... i — 1, the multicast
session topology will be a tree. The session topologies
are constructed using the topology discovery tool and the
loss and subscription information reports obtained from
recipients of the multicast sessions. All actions performed
by TopoSense are on this internal image of the multicast
tree topologies. The algorithm assumes that the average
bandwidth of each layer is known beforehand. This as-
sumption is reasonable as this can be advertised along
with the multicast address of the layer. The TopoSense
algorithm uses multicast tree topology information and
loss reports from multicast recipients to recognize occur-
rences of congestion. It allows receivers to explore avail-
able bandwidth in a coordinated manner and adapts to
transient traffic and competing sessions. TopoSense lim-
its the maximum subscription of layers in a subtree to the
maximum bandwidth between any receiver in the subtree
and the source.

Using the topology discovery tool, the controller agent
obtains regular updates of the tree topology of each mul-
ticast session in its domain and the layers traversing each
part of that tree. This is the only phase where informa-
tion needs to be obtained directly from routers. However,
this is handled by the topology discovery tool and the
controller agent does not concern itself with how this in-
formation is obtained. Every receiver is assumed to have
registered itself with the controller agent when it starts
subscribing to a multicast session. The controller uses
the topology discovery tool to construct the tree topology
for each session. In addition, the agent gathers packet
loss information and the number of bytes received at each
receiver. Loss information can be obtained using mecha-
nisms like (but not limited to) Realtime Transport Con-
trol Protocol (RTCP[4]). Gathering loss and subscription
information involves the flow of control traffic and is done
over a period of time.

TopoSense Algorithm
Input:
Multicast session topologies in the domain
Receiver packet loss rates
Number of bytes received at leaf nodes.
Output: Subscription level for each leaf node in each session
Algorithm:
For each session do
Compute congestion state for each node in the session
topology
Estimate link bandwidths for all shared links
For each session do
Find the bottleneck bandwidths for each node in the
session.
Estimate the fair share of BW on shared links based on
the bottlenecks.
For each session do
compute the subscription level for each leaf node in
the session.

Fig. 4. Stages of the TopoSense Algorithm

The controller agent runs the TopoSense algorithm pe-
riodically with the above information as input. As out-
put, the TopoSense algorithm produces the number of lay-
ers each receiver should subscribe. The controller agent
then sends control messages to the receivers with sugges-
tions for their subscription level. The main stages of the
TopoSense algorithm are described in Figure 4.

A preliminary version of the algorithm for a single mul-
ticast session focusing on intra-session fairness was pre-
sented in our previous work[5]. In this paper, we address
the more general case of multiple multicast sessions com-
peting for bandwidth. Sarkar and Tassiulas[6], [7] have
discussed the intractability of this problem. We evalu-
ate TopoSense vis a vis. inter-session fairness, stability
of subscription and the impact of stale topology informa-
tion. We now briefly describe the various stages of the
TopoSense algorithm.

Computing Congestion States: The algorithm as-
sumes that a leaf node is congested if the packet loss rate
at that node (for a particular session) is higher than a
threshold. Since, packet loss rate is known only for leaf
nodes in the tree, the packet loss rate at an internal node
(for a particular session) is assumed to be the minimum
of the packet loss rates at the children of that node. The
intuition behind this assumption is that if all the children
of a node are congested, then all the children will have
to reduce their bandwidth demands. This in effect means
that the parent node reduces its demand to a level equal
to the maximum demand of all its children, even if it is
not congested. Packet loss rates for internal nodes are
therefore computed in a bottom-up fashion. An internal
node is considered congested if:

o its parent is congested, or

« all its children have a packet loss rate greater than
a threshold value pipreshora and more than ngmiiar
percent of its children have packet loss rates which
are close to the average packet loss rate of all the chil-
dren, the deviation in packet loss rates of the children
is negligible.



At the end of this stage each node is labeled as CON-
GESTED or NOT-CONGESTED. In addition, the max-
imum number of bytes received by any receiver in the
sub-tree rooted at each node is recorded. This is useful
for estimating the capacities of shared links.

Estimating Link Capacities: In the absence of
knowledge of link capacities, the algorithm estimates link
capacities. An estimate of the link capacity is needed
to share the bandwidth among competing sessions. The
links are assumed to be of infinite capacity until 1) the
overall loss of packets on that link (i.e. the destination
node of that link) is greater than a threshold, and 2) all
the sessions sharing that link have a packet loss greater
than a threshold. The second condition is required be-
cause, loss at an internal node for a particular session is,
in reality, the minimum packet loss of any receiver in the
subtree rooted at that node. It is possible therefore that
the estimated loss for one session is much higher than the
estimated loss for another session. This may be because
some downstream node for the first session is congested
while no downstream nodes for the second session are con-
gested. However, if all the sessions have high losses, then
the probability that the link that they share is congested
is much higher. If both these conditions are satisfied,
then the bandwidth of the link is computed to be the
average number of bits transmitted per second, in that
interval. Once the bandwidth is computed, the estimate
is increased every interval by a small amount. This is
done because, the number of bytes transmitted over that
link may not equal the number of bytes reported received
by the receivers. This is possible when packets are still
remaining in the network and a receiver sends a report.
Since transient non-conforming flows, as well as bottle-
neck capacities downstream can lead to wrong estimates
of bandwidth, the capacity is reset to infinity at periodic
intervals and recomputed.

Finding Bottleneck Bandwidths: Once the shared
link capacities are known, we would like to know how
much bandwidth each session can possibly use on a shared
links without causing congestion downstream. Bottleneck
bandwidths for each node in each session are found by
propagating the minimum link capacity from source to ev-
ery node in the tree. This can be done in a single top-down
breadth-first pass over the tree. The maximum band-
width that each node can handle in some session is set to
be the maximum bottleneck of all the children in that ses-
sion. This can be done using a breadth-first, bottom-up
pass.

Bandwidth Sharing: In this stage, the available
bandwidth on a shared link is shared among competing
sessions. Since each session may have a different bottle-
neck capacity based on downstream link capacities and
different bandwidth requirements based on session char-
acteristics, an equal share would be inappropriate. Sarkar
and Tassiulas have shown that min-max fair allocations
may not exist for the layered model. We therefore use an
intuitive model of fairness. This is a reasonable approach
because we do not even know the exact link capacities in
the network. Every session must get as much bandwidth
at each link as can possibly be used without congesting the
network. For example, if there are two sessions sharing a
link, one with a downstream bottleneck of 250Kbps and
the other with a downstream bottleneck of 1Mbps, then

we would expect the first session to get 250Kbps and the
second session to get 1Mbps. TopoSense computes a fair
share as follows. It is assumed the every session gets at
least as much bandwidth as that of the base layer. Hence,
at each shared link, TopoSense computes the maximum
number of layers that each session can receive if all other
sessions were to receive only the base layer. This is done
top-down breadth first for each session. Thus, at the end
of this pass, the maximum possible layers that can be
received by each leaf node is known. Now, there is a
bottom-up pass, where the maximum possible demand of
internal nodes is set to the maximum possible demand of
any of its children. Suppose there are n sessions and the
maximum possible demand so computed is z; for each ses-
sion 3. Then the fair share of session is computed to be:

o Xﬁj where B is the estimated link capacity. One can
ez;,sily construct examples where this algorithm may allo-
cate more bandwidth than needed for some session and
thereby deprive some other session. However, no session
is under-allocated. Moreover, the system will stabilize
when the link capacity is re-estimated. At the end of this

stage, the following are known:

o the congestion state of every node (for each session),

« the capacity of shared links and

o the “fair” maximum bandwidth that each session can
utilize at shared links without causing congestion
downstream.

Computing Subscription Levels: In this stage,
the available bandwidth for each session is used to pre-
scribe subscription levels for each node. This stage of
the algorithm has been presented in greater detail in our
previous work[5]. This stage can be subdivided in two
parts: 1) computing demand for each node and 2) allo-
cating supply. The demand computation process can be
represented as a table lookup indexed by the congestion
state history (congestion states computed over the previ-
ous intervals) and total advertised bandwidth subscribed
in the past two intervals. The decision table is presented
in Table I. The congestion state history is presented as
a 3 bit integer in the table where CONGESTED=1 and
NOT-CONGESTED=0.

TopoSense is run in intervals. Suppose that the §** in-
terval starts at time T; and we are computing demand for
the interval starting at time T5. The congestion states at
times Ty, 71 and T, are represented at bit positions 2, 1,
and 0 respectively. The column, “BW Equality”, repre-
sents the relationship of the total bandwidth received in
interval Ty — T with respect to total bandwidth received
in interval 71 — T5. The demand computation proceeds
in a bottom-up, breadth-first manner. The demand at an
internal node is the aggregation of the demands of the chil-
dren. If a parent node is congested, the children assume
that they are congested because the parent is congested
and defer action to the parent. If a node is congested but
its parent is not, then it reduces the overall demand. In
general, in case of congestion in a sub-tree, action is taken
by the root of that sub-tree. This node also sets a back-
off timer for the highest layer being dropped so that this
layer is not subscribed to by another receiver in the near
future. Coordination among receivers is thus achieved.
Allocation of supply is simply a top-down pass which sets
the supply according to the demand.



Leaf/Internal Node | Congestion BW Equality | Action
State History
Leaf 0 Lesser Add next layer, if not backing off.
Leaf 1 Lesser If loss rate is high, drop layer, set backoff timer
Leaf 2,4,5,6 Lesser Maintain Demand
Leaf 3 Lesser Reduce demand to supply in Ty — T,
Leaf 7 Lesser Reduce Demand to half the supply in Tp — T,
Set the backoff timer
Leaf 0,4 Equal Add next layer, if not backing off.
Leaf 1,2,5,6 Equal Maintain Demand
Leaf 3,7 Equal Reduce Demand to half the supply in Tp — T,
Set the backoff timer.
Leaf 0 Greater Add next layer, if not backing off.
Leaf 1,2,4,5,6 Greater Maintain Demand
Leaf 3,7 Greater If loss is very high, then reduce demand to
half the supply in Tp — T},
Internal Node 0,4 All Cases Accept all demands of the child nodes
Internal Node 1,5,7 Greater Reduce Demand to half the supply in T, — Ty,
Internal Node 1,5,7 Equal, Lesser | Reduce Demand to half the supply in Ty — Tp,
Internal Node 2,3,6 All Cases Maintain Demand
TABLE 1

DECISION TABLE FOR COMPUTING DEMAND AT EACH NODE AT TIME T5.

IV. EVALUATION OF TOPOSENSE

We implemented the TopoSense algorithm described
above in the network simulator ns. Our work uses a hi-
erarchical source model[8]. Sources transmit a layered
video session consisting of 6 layers. The base layer is sent
at a rate of 32Kbps, with the rate doubling for each sub-
sequent layer. We consider constant bit rate as well as
variable bit rate sources. We used the same method to
generate variable bit-rate (VBR) traffic as proposed by
Gopalakrishnan et al.[9]. For the base layer, n packets
are transmitted in 1 second intervals. n has the value 1
with probability 1 — + and the value PA + 1 — P with

probability %. A is the average number of packets per
interval and P is the peak-to-mean ratio. Peak-to-mean
ratios in the range of 2 to 10 have been observed for VBR
traffic[9]. The packet size is chosen to be 1000 bytes. A
drop-tail policy was used at all nodes and link latency was
chosen to be 200ms for all links. The link capacities were
varied.

In our previous work[5], we presented results to illus-
trate that TopoSense converged to optimal subscription
of layers in a heterogeneous environment. These results
also showed that TopoSense imposed intra-session fairness
for a single multicast session. In this paper, we evaluate
TopoSense on the following:

o Stability: There must not be frequent changes in
bandwidth received. Ideally, layers should only be
removed when congestion occurs and layers should
only be added when capacity exists.

o Inter-session fairness: When there are multiple
sessions traversing the same set of links, bandwidth
should be fairly and fully utilized.

+ Robustness to Stale Information: We study
the impact of old topology and loss information on
the performance of TopoSense. Ideally, we would like
TopoSense to work well even with old information.

We used the topologies in Figure 5 to evaluate
TopoSense. Topology A is used to evaluate TopoSense
behavior in a heterogeneous environment. Topology A
consists of a single multicast session with two sets of re-
ceivers, each having different bandwidth constraints. The
number of receivers in each set is increased and their sub-
scription level monitored. Topology B consists of a num-
ber of different multicast sessions, each with one receiver,
sharing the same bottleneck link. The link capacity of
the shared link is varied with the number of sessions be-
ing simulated, so th at each session can ideally receive
500Kbps (4 layers). Since, we know the optimal solu-
tions for our topologies, we evaluate the performance of
TopoSense by comparing its behavior with that of the
optimal. To do so, we define the following metric. Let
z;(At) be the subscription level of receiver i in the inter-
val At and y; be the optimal subscription. Let || At ||
be the length of the interval At. We define the relative
deviation over the entire interval ) 1, to be:

2oae | (i(At) —yi)x [ At]]) |
2acyix 1At

Intuitively, the smaller the relative deviation, the bet-
ter the performance. It can be noted that once a stable
state has been achieved, this metric can be made arbi-
trarily good by increasing the time interval. However,
this is contingent on the system achieving a stable state.
This metric is sufficient for our purposes as we can com-
pute the relative deviation for time intervals of arbitrary
length. We ran numerous simulations based on the pa-
rameters outlined above. All the simulations were run
for a period of 1200 simulated seconds. The controller
agent was stationed at one of the source nodes in both
the topologies. This made the simulations more realisitic
as control messages could be lost due to congestion.
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Stability. We counted the number of times layers were
added or dropped by each receiver over the period of 1200
seconds, for Topologies A and B. For Topology A, we plot
the maximum number of changes in subscription by any
receiver over the entire 1200 seconds. We also plot the
mean time elapsed between successive changes in the sub-
scription level for that receiver (Figure 6). Similarly, for
Topology B, we plot the maximum number of changes
in the subscription level in any session over the entire
1200 seconds and the mean time elapsed between suc-
cessive changes for that session. The results are plotted
for CBR, VBR (P=3) and VBR (P=6) traffic (Figure 7).
There appears to be high variability in the number of
changes. This is because of the random back-off inter-
val chosen. Most of the changes occur when the receivers
explore available bandwidth by adding a new layer. Over-
subscribing causes losses and the receivers back-off. These
joins are immediately followed by a leave. Hence the sub-
scription consists of long stable spells interspersed with
very small intervals of joins/leaves. These results clearly
indicate that the subscription level is fairly stable over
time and can be controlled using the back-off interval.

Inter-session Fairness. Topology B was used for eval-
uating inter-session fairness. A common link was shared
by different numbers of multicast sessions. The capac-
ity of the link was varied so that each session could ide-
ally receive 4 layers if the bandwidth was shared in a fair
manner. Simulations were run with up to 16 competing
sessions for CBR, VBR (P=3) and VBR (P=6) traffic.
All the sessions started at the same simulated time. The
mean relative deviation from optimal subscription is plot-
ted for the time intervals 0-600 seconds and 600-1200 sec-
onds (Figure 8). A small relative deviation in both these
intervals indicates that TopoSense imposes fairness among
competing sessions irrespective of the time intervals. Fig-
ure 9 shows a sample plot illustrating the subscription of
layers and loss rate over a 10 seconds window when there
are four competing sessions sharing the link. As is seen,
some of the sessions over-subscribe to layers 5 and 6 at
several points in time. This happens because of two rea-
sons. First, TopoSense recomputes the link capacity at
periodic intervals. To do this, it first sets the link capac-
ity to infinity. This allows some sessions to over-subscribe.
Second, the traffic is bursty. Therefore the sessions may
actually not see losses when they add layer 5. Hence they
over-subscribe layer 6. However, heavy losses on adding
layer 6, allow TopoSense to compute the link capacity and
the system returns to a stable state.
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Impact of Stale Information. The results presented
above are based on topology information available instan-
taneously. This is clearly an unrealistic premise. To see
how old information affects results, we ran numerous sim-
ulations with old topology information. We varied the
staleness of information (from 2 seconds to 18 seconds)
and studied its impact on the mean relative deviation
from the optimal subscription of layers. We ran these
simulations on Topology A. The results for VBR (P=3)
traffic, with different number of receivers in the session,
are presented in Figure 10. As expected, performance de-
teriorates with stale information. The session with only 2
receivers appears to be least affected to staleness of infor-
mation. This can be attributed to minimal control traffic
from the controller agent to receivers. For the sessions
with more than two receivers, performance deteriorates
after 4 seconds and stabilizes at 10 seconds. The maxi-
mum path latency between source and receiver in these
sessions is 600ms. The maximum latency of any path from
source to receiver is important because, discovering the
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tree topology is dependent on this latency. Compared to
this latency, TopoSense does appear to perform well even
with information as old as 8 seconds. This is long enough
for the topology discovery tool to discover the topological
information.

V. CHALLENGES IN UsSING TOPOLOGY

The simulation results presented in the previous sec-
tion indicate that TopoSense can be valuable for conges-
tion control. However, there are a number of issues to be
resolved:

« Discovering topology efficiently: Though there
are a number of tools which discover tree topology,
many of them have scalability problems. However,
sub-trees can be discovered with fewer of scalability
problems. Tools which allow discovery of multicast
sub-trees need to be developed.

¢ Group-leave latency and layer granularity:
Leaving a troublesome group may not immediately
alleviate congestion because the last hop router
must use Internet Group Management Protocol
(IGMPJ[10]) to verify that there are no receivers for
that group. The latency in dropping a layer can cause
congestion if the layer to be dropped has a very high
data rate. A possible remedy to this problem is to
have finer granularity in bandwidth requirements of
layers. Adding a layer may increase bandwidth de-
mands by smaller amounts thereby limiting the mag-
nitude of possible congestion. However, the granu-
larity of layers is severely constrained by the encod-
ing scheme. Further, a very large number of layers
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Fig. 8. Fairness in Topology B

can delay convergence since layers are added one at
a time. Some form of interaction between border
routers and the controller agent can greatly decrease
group leave latency since the controller is aware of all
the receivers of a particular layer in the entire session
subtree. Expedited group-leaves, where routers keep
track of receivers downstream, may also be consid-
ered for decreasing group-leave latency.

o Estimating link capacity: We have designed an

algorithm to estimate link capacities in this paper.
However, it is only a first step in this direction®. It
is constrained by lack of loss information at internal
nodes. The algorithm can possibly under-estimate
the link capacities. However, this is not a serious
problem since the capacities are recomputed at fre-
quent intervals. Nevertheless, there is a need for bet-

ter mechanisms to estimate link capacities.

¢ Dealing with bursty traffic: Highly bursty traf-

fic can, in some cases, lead to longer convergence
time. Burstiness can cause buffer overflows at routers
thereby causing packet loss at receivers. When there
is more than one session sharing the same link, each
with different data rates for different layers, then
high burstiness in one of the sessions can impact es-
timation of the link capacity. A better mechanism
is needed to differentiate between bursty losses and
sustained congestion.

¢ Minimizing control traffic: Topology discovery,

collection of packet loss information and informing

IThere has been other work in this area. But they are either
not applicable to a multicast scenario or use probe packets which
consume bandwidth.
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users about subscription level—all of these gener-
ate network traffic. TopoSense is designed in such
a manner that the number of information packets
exchanged in every interval is linear with respect to
the number of receivers and sessions. The challenge
is in choosing the correct size of domains for the con-
trollers. A very small domain may have the same
drawbacks as a receiver-oriented approach while a
very large domain may have scalability problems.

o Interval size. The frequency with which decisions
are made is a very important parameter. It may not
be feasible to quickly ascertain the local topology.
Burstiness in a short interval may lead to incorrect in-
ferences about congestion. However, a large interval
implies slow reaction time to congestion. In addition,

information may be “stale” if a very large interval is
chosen. Choosing the optimal interval size is thus
crucial for the efficient use of topology for congestion
control.

VI. RELATED WORK

We can divide the problem domain in two parts: 1)
discovering multicast tree topology efficiently and 2) de-
livering multimedia content efficiently using multicast.
Techniques employing the mtrace utility[11] as well as
SNMP[12] have been explored[3], [13], [14], [15] for mul-
ticast topology dicovery. In this paper, we focus more
on efficient content delivery rather than on topology dis-
covery. We assume that tree topology is available and
assess how it can be put to use. This lets us explore the
theoretical limits of this approach. There is copious litera-
ture on techniques for multicast distribution of streaming
data. Li et al.[2] present a comprehensive history of ap-
proaches to multicast-based multimedia content delivery.
Other approaches include network based[16] or a hybrid
of network and user based[17] priority packet-dropping
schemes. These approaches are either router-based or use
end-to-end information. Router-based solutions, though
effective, may not be easy to deploy while approaches
which only use end-to-end information ignore rich sources
of useful information. Moreover, coordination among re-
ceivers is very difficult to achieve in the latter class of
approaches. Our approach is to develop an application-
layer algorithm that relies on a topology-constructing tool
to make suggestions about optimal subscription levels. An
application level approach uses internal state of the net-
work, as well as end-to-end information available from
receivers through such mechanisms as RTCP.

Research efforts have also been directed to discover and
quantify the TCP approach to congestion control[18], [19],
so that it can be applied to UDP-based multicast traffic.
These methods rely on an estimate of round trip times
from the sender, and on estimates of packet loss rates.
These metrics run into an intuitive roadblock when it
comes to multicast. Because there are multiple receivers,
attempts to define round trip times are nebulous at best.
In addition, the characteristics of the streaming media
traffic may not be conducive to TCP-like flow control. For
instance, additive increase with multiplicative decrease,
though practical for TCP, does not make sense for layered
streaming media. Any attempts to simulate TCP-like be-
havior for such traffic requires a fundamental change in
encoding techniques. In the absence of such a change,
one cannot hope to simulate TCP-like behavior and at
the same time ensure “quality” in data reception. Our
approach has been to take a liberal view towards TCP
friendliness in the light of the fact that HITTP connec-
tions, which are typically short lived, form the bulk of
Internet traffic[20]. In contrast, we are focusing on multi-
cast sessions which have a much longer duration. Coupled
with the fact that multicast prunes may take time on the
order of minutes[21], it is a reasonable possibility that
individual TCP sessions will transmit their payload and



cease to exist by the time multicast congestion control has
an effect.

The work by Sarkar and Tassiulas[6], [7] is very similar
to ours. The problem domain they address is the same
and the distributed architecture they propose is similar to
ours. Their work shows that max-min fairness may not
achievable with a layered approach. They also show that
lexicographically optimal rate allocation is possible but
NP-hard. However, their distributed architecture involves
algorithms which will not work with the layered model
addressed in this work. Their algorithm, which works for
the layered model, has not been elaborated upon for a
distributed architecture. A significant difference between
their work and ours is that their work assumes compu-
tation within the network, or alternately access to infor-
mation available within the network. For instance, their
work assumes knowledge of link capacities. In our work,
we assume we do not have access to network internals
except for the topology information. We estimate link
capacities based on loss rates at the end-receivers.

VII. CONCLUSIONS

In this paper, we have presented a case for using multi-
cast tree topology for congestion control. We have iden-
tified the key features of a topology sensitive congestion
control algorithm and developed an architecture to im-
plement it. The main thrust of the architecture is dis-
tributed control in independent administrative domains.
We believe this approach is scalable and flexible to ad-
ministrative heterogeneity. The domain based controller
agents described in our paper can also be used for billing
customers for multicast content delivered. We have devel-
oped an algorithm called TopoSense which uses topology
information for congestion control. Our simulation results
with ns indicate that TopoSense is robust, shares band-
width equitably among competing sessions and is fair to
receivers with disparate resources. The results also indi-
cate that TopoSense is fairly stable even with old topol-
ogy information. Though a number of issues need to be
resolved, the results corroborate our intuition that tree
topology information is very useful for cognizance and
control of congestion in a multicast—enabled Internet.
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