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Abstract. Businesses selling multimedia rich software or e-content are
growing in the Internet. The e-content can be downloaded by the cus-
tomer or alternately, streamed by the content provider, immediately after
on-line transactions. Since Internet connection speeds are variable, rang-
ing from dial-up access speeds to broadband speeds, the content providers
may provide different levels-of-service (LoS) for the same content. If a
provider offers service at different LoS, for example at 56 kbps, and 128
kbps, how should the price of the service be set such that the provider
makes the most money? In addition, how should the resources be pro-
visioned among the different service levels? In this paper, we address
such pricing and resource provisioning issues for delivering e-content at
multiple service levels.

1 Introduction

Available bandwidth and usage have increased in the Internet. Use of the In-
ternet to purchase goods and services is also increasing. At the same time, the
multimedia capabilities of computers are improving while remaining affordable.
Together, these trends have spawned services offering video-on-demand, down-
loadable CDs etc. While such services are growing, all users do not have the same
Internet connection speeds. Some users connect at dial-up speeds while others
at broadband speeds. To accommodate this heterogeneity in connection speeds,
the content provider may serve the same content at different quality levels. For
instance, many web sites offer the same streaming content at two quality levels—
56 kbps and 128kbps. Since requests for different levels-of-service (LoS) consume
different amount of server resources and are presumably quoted a different price,
one must examine how to provision resources for each LoS. In this paper, we seek
to answer the following questions: 1) how should a content-provider price content
at each LoS, and 2) how should a content provider allocate resources for each
LoS.

In this work, we differentiate between connectivity and content pricing. We
focus on the latter, i.e., our work does not deal with pricing the customers’ or
the content provider’s Internet connection. Instead, it deals with how much the
customers pay for content. We assume that both the customer and the content



provider have suitable Internet connectivity to participate in the transaction.
Our work builds on our earlier research for pricing on-demand delivery of con-
tent when there is single LoS [1–4]. In our earlier work [5], we compared a num-
ber of simple pricing schemes using simulations. These pricing schemes could be
classified as being static or dynamic. In a static pricing scheme, the price of the
content does not change frequently. In a dynamic pricing scheme, the price may
vary on much smaller time scales based on factors like current server load, re-
quest arrival rate etc. In our simulations, we observed that static pricing schemes
do not perform well when insufficient information is known about the customer
population. Based on the simulations, we believe that there exist fixed prices
which generate very high revenues but, finding these prices is non-trivial. Fur-
thermore, the fixed prices that generate highest revenue can differ based on the
customer population, request arrival patterns, server load etc. We formulated a
dynamic pricing scheme called HYBRID which not only generated consistently
high revenues across a range of simulation scenarios and customer populations,
but also reduced the number of requests rejected due to lack of server resources.
In this paper, we primarily focus on extending the HYBRID pricing scheme
to systems with multiple levels-of-service (multi-LoS systems). We validate our
work through simulations.

There are two challenges in designing pricing schemes for multi-LoS systems.
First, it is difficult to quantify the “capacity” of the system. For instance, con-
sider a system where resources are quantified in terms of channels. Consider a
system with 100 channels and two LoS. Suppose that for a lower LoS one channel
is allocated, and for a higher LoS two channels are allocated. Then the system
can accomodate 100 low LoS requests or 50 high LoS requests. The actual num-
ber of requests that the system serves will vary with the relative fraction of high
vs low LoS requests. Moreover, when there are more requests than the system
can serve, it is difficult to decide which requests to satisfy. For instance, if it is
known that customers are willing to pay at least $5 for the lower LoS and $7
for the higher LoS, accepting low LoS requests will increase the revenue when
resources are constrained. However, since how much customers are willing to pay
is not known, deciding which requests to serve is difficult.

The other challenge in pricing multi-LoS systems is in understanding cus-
tomer behavior. For customers with high bandwidth connections, the choice of
LoS depends depend not only on the LoS actually desired but also on how other
LoS for that content are priced. For instance, suppose that a customer with a
high bandwidth connection is willing to pay $9 for a low LoS. If the desired LoS
is priced at $6 and the higher LoS at $8, then the customer may choose the
higher LoS. Though this increases the revenue by $2, it may prevent another
low LoS request from being satisfied. The system loses $4 in this case. In this
paper, we make a simplifying assumption that the customers choice of LoS is
independent of the price for other LoS. This is a reasonable assumption because
in the Internet today, content is typically served at LoS where there is a per-
ceptible difference in quality between the LoS. Customers with high bandwidth
connections may typically not purchase content at low LoS. We shall address
the general problem where choice of LoS is correlated with price in future work.

We briefly survey related work in the following. Basu and Little[6], have
formulated models for VoD and pricing issues related to them. Mackie-Mason et
al.[7] investigate adaptation to changes in consumer variables for an information



goods market. Sairamesh and Kephart [8] discuss competition and price wars in
information goods markets. Their analysis assumes that each competitor sells
at a different LoS. All the above do not consider distribution constraints of the
content provider. Wolf et al. [9] study how to maximize profits when broadcasting
digital goods. When resources are constrained, they schedule the delivery at a
later time, and pay a penalty for late delivery by charging a lower price. Chan
and Tobagi [10] design scheduling schemes for batched delivery of video-on-
demand, when the fixed price for the content is known. Their work does not
consider multiple levels-of-service. To the best of our knowledge, though there
has been considerable work on connectivity pricing, there has been very little
work on pricing on-demand delivery of e-content when there are constraints on
the distribution resources of content providers.

The rest of the paper is organized as follows. Section 2 describes a formula-
tion for revenue earned in multi-LoS systems. Section 3 describes our HYBRID
pricing scheme and two other dynamic pricing schemes adapted from the work
by Sairamesh and Kephart [8]. Section 4 discusses the simulation framework and
the experiments we perform. Results are presented in Section 5. We conclude
the paper in Section 6.

2 Revenue Model and Resource Provisioning

We consider a system where requests are satisfied if resources are available and
the customer agrees to pay the quoted price. It is assumed that all the server
resources can be quantified and mapped to a real number. One approach to
doing this is to consider the bottleneck resource at the server as the indicator of
system resources. For example, if bandwidth1 is the bottleneck, then the total
available bandwidth is modelled as the system capacity. For the purposes of
this paper, we shall assume that available connection bandwidth of the content
provider is the measure of system resources. When a request is served, some of the
connection bandwidth is allocated to that request2. Requests are processed on a
First-Come-First-Served basis. If there is insufficient bandwidth available when
a request arrives, then the request is rejected. In our model, we assume that once
the content provider makes the initial infrastructural investment, there are either
negligible or fixed costs in maintaining the resources (caches, servers, bandwidth
etc.), i.e., there are no additional costs based on number of requests served. This
is a reasonable assumption because servers incur fixed costs and bandwidth
can be bought at a flat monthly rate. If maintenance costs are negligible or
fixed, profit maximization is equivalent to revenue maximization. We also assume
that the market is monopolistic, i.e., there is no other entity selling the same
content. This is a realistic assumption in many scenarios where the content owner
personally sells the content or has licensed it to a single distributor.

Table 1 presents the symbols we have used in our analysis. Since we assume
that a customer’s choice of LoS is independent of price, we can treat the same
content at different LoS as different products. Consider an arbitrary customer
who wants to purchase content pi,j . We denote his/her decision to purchase the
service by the random variable Υi,j which can take two values, 1 for accept and
0 for reject. Let E[Υi,j | ψi,j ] denote the expectation of the decision to purchase

1 Other bottlenecks include memory, and latency.
2 This does not imply that network resources are reserved.



Notation Description

m Number of products
L Number of levels of service
B Total system resources

bj Resources provisioned for jth LoS

lj Resources for serving a request at jth LoS

pi,j ith product at jth LoS
Υi,j Decision to purchase pi,j (0 or 1)
ψi,j Price of pi,j

λi,j Request arrival rate for pi,j

R Total revenue per unit time
d Mean service time
ρ System Utilization

Table 1. Symbols Used

content pi,j when the price is ψi,j . The expectation of revenue per unit time is
given by:

R =
m∑

i=1

L∑

j=1

λi,jψi,jE[Υi,j | ψi,j ] (1)

Notice that the revenue function described above does not consider resource
constraints. To model resource constraints, we use the notion of system utiliza-
tion. System utilization, ρ, is the relative fraction of time for which the channels
are busy servicing requests. It is defined as the ratio of the number of requests
entering the system per unit time to the number of serviced requests exiting the
system per unit time. In a stable system, this ratio must be less than or equal
to 1. Notice that, the number of requests that can be serviced per unit time
depends on the system resources. If there are more requests than the system can
serve, the predicted system utilization exceeds 1. In the revenue maximization
problem in Equation 1, we impose an additional constraint that the predicted
system utilization should be less than or equal to 1.

System utilization is easily defined when there is a single LoS. If l is the
resources consumed by a request at this LoS, the system utilization can be com-
puted as dl

B
∑m

i=1 λiE[Υi | ψi]. However, with multiple LoS, and requests at each
LoS consuming different amount of resources, it is not possible to quantify the
number of serviced requests exiting the system. We therefore take a different
approach. Suppose that the system resources are partitioned into 〈b1, b2, ..., bL〉,
where bj is the resource provisioned for level j. Then, we can impose the system
utilization constraint independently for each LoS. We solve an independent con-
strained maximization problem for each LoS. The total revenue earned critically
depends on how the resources are partitioned for each level. Notice that resources
consumed by requests for level j will be less than or equal to

∑m
i=1 ljλi,j . Based

on this, we provision resources as follows: bj =
∑m

i=1
ljλi,j∑L

j=1

∑m

i=1
ljλi,j

The revenue

maximization problem is then given by:



– Maximize:
∑L

j=1Rj where Rj =
∑m

i=1 λi,jψi,jE[Υi,j | ψi,j ]
– Subject to:

• ψi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ L

• ρj ≤ 1, 1 ≤ j ≤ L, where ρj = dlj
bj

∑m
i=1 λi,jE[Υi,j | ψi,j ]

As can be observed, the revenue model relies on knowledge of the request
arrival rate and the expectation of the decision to purchase, given the price. The
request arrival rate can be monitored. However the expectation of the decision
to purchase is not known. In the next section we outline the HYBRID scheme
which estimates the expectation of the decision to purchase.

3 Dynamic Pricing Algorithms

In this section, we briefly describe the HYBRID pricing scheme. The HYBRID
algorithm is based on the premise that customers are rational human beings. We
are interested in the fraction of requests that will result in successful transactions.
For a rational customer population, it can be argued that this fraction is a non-
increasing function of the quoted price. For a price x, let f(x) denote the fraction
of customers who will accept the price. Let xlow be a price below which f(x)
is exceptionally high, say more than th and let xhigh be a price above which
f(x) is exceptionally low, say below tl. Then f(x) can be approximated in the
domain [xlow, xhigh] using some non-increasing function. We propose a family
of decreasing functions which depend on a parameter δ described as follows.

f(x) =





th , 0 ≤ x < xlow

(th − tl)
[
1−

(
x−xlow

xhigh−xlow

)δ
]

+ tl , xlow ≤ x ≤ xhigh

tl , x > xhigh

(2)

Figure 1 illustrates the family of non-increasing functions. By experimenting
with different prices to observe the fraction of customers who accept the price,
and using statistical methods like least squared errors, one can estimate the
parameter δ, and the threshold prices xlow and xhigh. Notice that f(x) is also the
expectation of the decision to purchase, given price x. Once all the parameters
are known, the content provider can predict the customer behavior and thereby
choose a price3 using the optimization problem described in the previous section.
In HYBRID, the customer reaction is continuously monitored, and the price is
varied at regular intervals4. The details of this algorithm are presented in our
earlier work [5].

On performing simulations with the scheme described above, we observed
that while the revenue earned was high, the number of requests rejected due to
lack of resources was also high. This was mainly because when the algorithm
experimented with low prices, more customers accepted the service than could
be accommodated by the server. We therefore modified the algorithm as follows.
Whenever the server load increased beyond a certain threshold, an exponentially
3 The price so obtained may not be the global optimum.
4 Temporal price variations are an inherent feature in many commodity markets.
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Fig. 1. Customer Model

increasing price was quoted. Suppose that x is the fraction of available resources
that have been allocated to satisfy requests. Let L and H be the lowest price and
highest price that the content provider decides to quote to customers. Then, if
x is greater than a threshold, the price quoted to a customer, irrespective of the
content requested, is given by: (L−1) + (H−L+1)x. This modified algorithm,
generated consistently high revenues while at the same time minimizing the
number of requests rejected due to lack of resources.

Other Dynamic Pricing Algorithms

We present two dynamic pricing algorithms adapted from the work by Sairamesh
and Kephart [8]. These algorithms were observed to converge to the game the-
oretic optimal price in a competitive market in the simulations performed by
Sairamesh and Kephart5. We chose these algorithms for the purposes of evalua-
tion and comparison with our algorithm.

Let L and H be the lowest and highest prices respectively that the content
provider decides to quote. In the Trial-and-Error-Pricing (TEP) algorithm, an
initial price is chosen at random in the range [L, H]. At regular intervals, with
a small probability (called small jump probability) a random increment to the
price is chosen from a normal distribution with 0 mean and very small standard
deviation. After the price is changed, the revenue earned in the next interval is
5 Though many other algorithms were presented in their work, the market assump-

tions for the other algorithms did not match the market scenario of our work. For
instance, we assume a monopolistic market and that there are constraints on the
distribution resources. Their work was for a competitive market with no constraints
on the delivery mechanism.



monitored. If the revenue earned per request is lower than before, the old price is
restored. In addition, with a very small probability (called big jump probability),
a new price is chosen at random. The big jump probability is much smaller than
the small jump probability.

The Derivative-Following-Pricing (DFP) algorithm is similar to the TEP
algorithm. An initial price in the range [L, H] is chosen at random. At regular
intervals, the price is varied by a random step size. If in the next interval, the
revenue per customer increases, then the next increment is chosen in the same
direction, i.e., price is increased. If however, the revenue decreases, then the
direction of increment is reversed, i.e., the price is decreased. At all times, the
price is kept in the range [L, H].

4 Simulations

We performed simulations to evaluate our pricing algorithm. We implemented
to model a content delivery system. All our simulations are averaged over five
runs with different seed values for the random number generator. We describe
the components of our simulation below.
System Description: We performed simulations with two different systems,
one with a T3 (45 Mbps) outgoing link and the other with OC3 (155 Mbps)
outgoing link. We chose these two link capacities to represent bandwidth capac-
ities of a typical content provider. We assumed that there are enough servers to
accommodate all the incoming requests. In this case, bandwidth is the bottle-
neck resource. We ran simulations on these systems to examine how the perfor-
mance of the pricing algorithms varies with resource availability. In our system,
customers could choose from one of two LoS— 56kbps or 128kbps. We chose
request service times from a uniform distribution between 90 and 110 minutes.
This closely models the typical length of movies in a VoD system6.
Customer Choice of Products: In all our simulations we assume that there
are 100 products for the customer to choose from. Customer choice of the prod-
ucts was assumed to follow a Zipf-like distribution with zipf-exponent7, θ = 0.73.
In a Zipf-like distribution, the ith popular product in a group of m products is

requested with probability
1
iθ∑m

j=1
1

jθ

.

Customer Valuation Model: We assume that the products are partitioned
into classes. The valuation of a product is drawn from a probability distribution
which is common for all products in a class. We further assume that the content
provider knows how the products have been partitioned, but has no knowledge
about the probability distribution. This is a reasonable assumption because, in
real-life, the content provider can partition products into “New”, and “Old”
classes. The valuations for products in one class can be expected to be signifi-
cantly different from those of products in other classes. In our simulations, we
chose the number of classes (say k) and a product was equally likely to belong
to any of these k classes.
6 Video-on-demand using a 56 kbps modem may sound unrealistic. However, one can

think of downloading mp3 songs in about 100 minutes using a 56 kbps modem.
7 Web-page accesses have been observed to obey a Zipf-like distribution with zip-

exponent in the range 0.64 to 0.83 [11].



Since humans typically think in terms of discrete values8, we chose three
possible discrete probability distributions for modelling customer valuations–
Uniform, Bipolar, and Zipf. We also chose one continuous distribution– Normal.
We briefly describe each of them below:

– Uniform(l, h, n): Customer valuations are drawn from n equally spaced
values in the range l to h (both inclusive) with equal probability.

– Bipolar(l, h, r): Customer valuations are either l with a probability r, or
h with a probability (1 − r).

– Zipf(l, h, n, θ): Customer valuations are drawn from a set of n equally
spaced values in the range l to h (both inclusive) whose ranks follow Zipf
distribution with zipf-exponent θ. Income distributions are believed to cor-
respond to a Zipf distribution with θ = 0.5 [12].

– Normal(µ,σ): Customer valuations are drawn from a normal distribution
with mean µ and standard deviation σ. We ignore negative values drawn
from this distribution.

In all our simulations, our unit of currency is dimes (10 dimes = $1). We
performed simulations with numerous customer valuations. In this work, we
present results for customer valuations that are “realistic”. We use valuations
corresponding to prices charged in movie theaters. We have observed theaters
charging anywhere in the range of $2.50 to $8.50 for movies. We chose two classes
of products. For simplicity of labelling, we shall refer to these classes as “Old”,
and “New”. For the Uniform distribution, and 56kbps LoS, valuations were in
the range [15, 25] and [25, 45] dimes for Old and New movies respectively. For 128
kbps LoS, valuations were in the range [50, 70] and [60, 90] dimes respectively.
In case of the Zipf distribution, and 56 kbps LoS, valuations were in the range
[20, 35] and [30, 45] dimes for Old and New movies respectively. For 128 kbps
LoS, valuations were in the range [45, 60] and [70, 99] dimes respectively. In case
of the Bipolar distribution, and 56 kbps LoS, valuations drawn from {15, 32},
{30, 38} dimes respectively. For the 128 kbps LoS, valuations were drawn from
{50, 67} and {70, 87} dimes respectively. In case of the normal distribution, the
〈µ, σ〉 of the distributions were: 〈20, 5〉 for (Old, 56 kbps LoS), 〈35, 5〉 for (New,
56 kbps LoS), 〈50, 10〉 for (Old, 128 kbps LoS), and 〈80, 10〉 for (New, 128 kbps
LoS).
Pricing Policy: We assume that the content-provider will charge at least $1
and not more than $10 for serving the content. We simulated all three pricing
algorithms described in the previous section. For the Trial-and-Error-Pricing al-
gorithm, we set small jump probability to be 0.05 and big jump probability to be
0.001 as mentioned by Sairamesh and Kephart [8]. For the Derivative-Following-
Pricing algorithm, price increments were chosen from a uniform distribution
in the range [0, 10]. In case of the HYBRID algorithm, we chose a server load
threshold of 0.75. When current server load exceeded this threshold, exponen-
tially increasing prices were charged.

8 In real life, customer valuations may not conform to any of these distributions. But
in the absence of real life data, our objective was to test the robustness of the pricing
algorithms over a range of “feasible” customer behavior patterns.
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Fig. 2. Request Arrival Process

Request Arrival Process: We obtained hourly logs from a Content Delivery
Network9 for all content requests between the dates December 28, 2000 and
September 8, 2001. The data we obtained consisted of the number of connec-
tions and the number of bits transmitted per second during each hour of the
observation period. The data was collected over streaming servers across the
United States. We obtained data for Real, Windows Media and Quicktime con-
nections. Of these, we could only use data from Quicktime connections because
of differences in the way Real and Windows Media count the number of connec-
tions. Assuming that requests could only be of two types– 56 kbps or 128 kbps,
we estimated the relative fraction of requests for each level of service. We then
scaled the data we obtained so that it matched the total bits transmitted by
Real, Windows Media and Quicktime put together. We chose two representative
weeks–December 29 to January 4, and March 30 to April 5 for running our simu-
lations. The first week is during peak holiday season. The second week is during
a normal week during the year. The request arrival rates and the fraction of 56
kbps requests for both the weeks is shown in Figure 2. Notice that the request
arrivals are lower for the peak holiday season. This could possibly be because
the CDN usage could have grown over the five months in between. Also, notice
the the fraction of requests for 56 kbps service varies a lot in both the weeks.
Though it would be tempting to draw inferences on the nature of the traffic, the
growth of broadband, and other statistics based on this data, we would like to
emphasize that we obtained the data based on a number of assumptions which
may not hold in reality. However, these assumptions do not defeat the purpose of
generating semi-realistic test cases for simulation in the absence of actual trace
data.
Metrics: We use two metrics in our simulations: (1) revenue earned, and (2)
percentage of requests denied service because they could not be scheduled due
to lack of resources. The higher the revenue earned by a pricing algorithm, the
better the performance. Ideally, we would like to compare the revenues earned by
each algorithm with the predicted maximum expectation of revenue, computed
using complete knowledge of system and customer parameters. However, as we

9 We have withheld the name of the CDN upon request.



shown in our earlier work [5], the revenue maximization problem is intractable
when customer valuations conform to discrete probability distributions. Even for
the normal distribution, in a system with 100 products and a variety of request
arrival rates, it is difficult to compute the globally optimal revenue. We there-
fore only use comparison among revenues earned by the different algorithms in
different scenarios to characterize them. Thus, it is quite likely that even though
one algorithm performs very well, the revenue earned using that algorithm may
be very far from the global optimum. Our focus therefore has been to ascertain
if one of the algorithms performs consistently well in comparison to the other
algorithms across the different customer valuation and system load profiles. Our
other metric, the fraction of denied requests, in very important for a commercial
system for two reasons. First, a high percentage of denied requests indicates that
the content-provider is not living up to service guarantees. Second, it indicates
that the content provider is unable to manage available resources efficiently10.

5 Results

We now present our simulation results. We simulated two situations:

1. There is no change in the customer behavior. However, the request arrivals
are dynamic.

2. There is a change in the customer behavior during peak hours. This change
corresponded to the time in the request arrival patterns when there was a
sudden surge in arrivals.

To better illustrate the performance of each pricing algorithms, across differ-
ent system and customer profiles, we present the results in tabular form. Each
entry in the table is an ordered pair 〈 R, r 〉. R is the mean revenue earned
by that pricing algorithm over a number of simulations and r is the mean re-
quest denial rate. By denial rate we mean the fraction of requests that could
not be served (due to lack of resources) even though the customer agreed to the
price. Note that it will not be appropriate to compare revenues within a column
because, the customer valuations are different for different distributions.
Simulation 1: Since the performance was consistent through all the days of the
week, we only present results for single days during the chosen weeks. We presents
for Dec 29 2000 (Friday, holiday season), March 31 2001 (weekend) and April
3 2001 (weekday). Table 3 presents the results for the first set of simulations.
The revenues have been rounded to the nearest 1000. In Table 3 we observe that
on average, the HYBRID algorithm earns 75% to 150% more than TEP and
10% to 87% more than DFP across all the workloads and for both the system
capacities. However, there were some simulations in which the TEP algorithm
earned comparable revenues. This happened when the initial price chosen was
close to the ideal fixed price. Even in those simulations, the HYBRID algorithm
earned as much or slightly more revenue. The DFP algorithm outperforms the
TEP algorithm in all the cases shown here, mainly because it learns the customer
behavior better than TEP. We also observe that the service denial rate is very

10 We make a distinction between customers who are denied service because they do
not accept the price and those who accept the price but are denied service due to
resource constraints.



December 29 2000

T3 link OC3 link

HYBRID TEP DFP HYBRID TEP DFP

Uniform 〈 469, 0.03 〉 〈 268, 0.49 〉 〈 356, 0.69 〉 〈 1273, 0.00 〉 〈 846, 0.35 〉 〈 1151, 0.53 〉
Normal 〈 472, 0.02 〉 〈 229, 0.39 〉 〈 300, 0.62 〉 〈 1207, 0.00 〉 〈 713, 0.26 〉 〈 967, 0.47 〉
Bipolar 〈 458, 0.05 〉 〈 250, 0.49 〉 〈 388, 0.39 〉 〈 1399, 0.01 〉 〈 790, 0.35 〉 〈 1220, 0.25 〉

Zipf 〈 310, 0.01 〉 〈 130, 0.33 〉 〈 268, 0.53 〉 〈 947, 0.00 〉 〈 407, 0.21 〉 〈 866, 0.40 〉
March 31 2001

T3 link OC3 link

HYBRID TEP DFP HYBRID TEP DFP

Uniform 〈 454, 0.03 〉 〈 219, 0.55 〉 〈 310, 0.70 〉 〈 1406, 0.01 〉 〈 652, 0.48 〉 〈 966, 0.62 〉
Normal 〈 485, 0.04 〉 〈 183, 0.50 〉 〈 260, 0.71 〉 〈 1461, 0.02 〉 〈 559, 0.43 〉 〈 850, 0.63 〉
Bipolar 〈 440, 0.04 〉 〈 208, 0.54 〉 〈 306, 0.60 〉 〈 1372, 0.02 〉 〈 627, 0.46 〉 〈 979, 0.52 〉

Zipf 〈 319, 0.00 〉 〈 125, 0.46 〉 〈 231, 0.55 〉 〈 1025, 0.00 〉 〈 416, 0.39 〉 〈 781, 0.48 〉
April 3 2001

T3 link OC3 link

HYBRID TEP DFP HYBRID TEP DFP

Uniform 〈 428, 0.02 〉 〈 179, 0.54 〉 〈 265, 0.65 〉 〈 1264, 0.01 〉 〈 550, 0.40 〉 〈 852, 0.51 〉
Normal 〈 459, 0.04 〉 〈 163, 0.50 〉 〈 257, 0.60 〉 〈 1331, 0.01 〉 〈 513, 0.37 〉 〈 862, 0.47 〉
Bipolar 〈 435, 0.04 〉 〈 171, 0.52 〉 〈 278, 0.59 〉 〈 1321, 0.01 〉 〈 533, 0.39 〉 〈 895, 0.45 〉

Zipf 〈 325, 0.03 〉 〈 119, 0.46 〉 〈 229, 0.57 〉 〈 1033, 0.00 〉 〈 400, 0.34 〉 〈 758, 0.44 〉

Fig. 3. 〈Revenue, denial-rate〉 of Pricing Algorithms with No Changes in Customer
Behavior

high for both TEP (0.21 to 0.55) and DFP (0.25 to 0.70) algorithms. This is
because, they charge a low price and cannot accommodate all the requests. Such
high service denial rates would be unacceptable in a commercial content delivery
system. We also note that the revenues with OC3 link are higher than with the
T3 link. This is clearly because the system can accommodate more requests.
Note that the revenues during the weekend (March 31) are in general more than
the revenues during the weekday (April 3) for all the algorithms. This is because
of the differences in the request arrival pattern.
Simulation 2: In the second set of simulations, we varied the customer valuation
during peak hours. For the results presented in this paper, all the customer
valuations were increased by 10-20 dimes during peak hours. Table 2 presents
the results. Since the results are similar to the first set, we present results only for
March 31 due to space constraints. As before, the revenues have been rounded to



March 2001

T3 link OC3 link

HYBRID TEP DFP HYBRID TEP DFP

Uniform 〈 473, 0.04 〉 〈 240, 0.60 〉 〈 318, 0.73 〉 〈 1469, 0.02 〉 〈 711, 0.52 〉 〈 995, 0.65 〉
Normal 〈 497, 0.06 〉 〈 201, 0.55 〉 〈 270, 0.74 〉 〈 1533, 0.03 〉 〈 617, 0.48 〉 〈 873, 0.66 〉
Bipolar 〈 458, 0.05 〉 〈 242, 0.60 〉 〈 314, 0.65 〉 〈 1424, 0.03 〉 〈 715, 0.52 〉 〈 1006, 0.57 〉

Zipf 〈 340, 0.02 〉 〈 158, 0.53 〉 〈 253, 0.63 〉 〈 1097, 0.01 〉 〈 509, 0.45 〉 〈 839, 0.55 〉
Table 2. 〈Revenue, denial-rate〉 of Pricing Algorithms with Changes in Customer
Behavior

the nearest 1000. The HYBRID algorithm consistently generates high revenues in
comparison to the other algorithms across all customer distributions and resource
constraints, mainly because it learns the customer behavior by experimenting
with different prices. All the results appear consistently similar to the results
in the first set of simulations. All revenues are marginally higher than in the
first set because the customer valuations are higher during the peak hours. The
revenues are however not significantly higher because the customer valuations
did not increase significantly and moreover both the systems did not have enough
capacity to satisfy all the requests. We also observe that the service denial rate
is higher for all the algorithms. This is because, customers have more money
to spend during peak hours, and therefore accept the quoted price more often.
Note that the increase in service denial rate is higher in case of DFP (around
0.03 to 0.08) and TEP (0.04 to 0.07) than in case of HYBRID (around 0.01 to
0.02).

The reason why DFP and TEP do not perform well is that the algorithms
do no consider resource constraints. They were primarily designed for a scenario
where e-content can be delivered at leisure. We also ran other simulations to
evaluate our choice of parameters for the algorithms. We only present a summary
of our findings due to reasons of space. We observed that performance of the
TEP and DFP did not vary when we changed the interval after which prices are
reassessed. This was because the jumping probabilities for TEP are very small,
and in case of DFP, the algorithm itself is independent of the interval. In case
of the HYBRID algorithm however, we observed that a small interval generates
higher revenue but increases service denial rate. We found that an interval of
45 minutes was ideal in terms of revenue as well as service denial rate. The
results presented in this paper used a 45 minute interval for all the algorithms.
We also observed that by increasing the big jump and small jump probability,
the performace of the TEP was more erratic. The revenue did not increase or
decrease in a consistent way with increasing jumping probability.

6 Conclusions

In this paper we developed an approach for pricing delivery of e-content in a
system with multiple LoS. The pricing scheme, called HYBRID, was dynamic
because the price varied with time. The pricing scheme was based on oberving
customer reactions to price and provisioning of resources among the different
levels of service. Resources were dynamically provisioned based on the amount



of resources that requests for each LoS could consume. We compared the perfor-
mance of this scheme with two other simplistic dynamic pricing schemes adapted
from work by other researchers. We performed simulations using semi-realistic
data to evaluate the performance of the algorithms. We observed that the HY-
BIRD pricing scheme consistently generates high revenues across a range of cus-
tomer and system profiles. We also observed that the HYBRID pricing scheme
reduced the number of customers rejected service due to resource constraints
mainly by charging high prices at times of peak load. We observed that the two
other dynamic pricing schemes failed to generate higher revenues mainly because
they do not consider resource restrictions for content delivery.

In this work, we assumed that the customer’s choice of LoS is independent of
the price of the content. Such an assumption is valid in today’s Internet where
there is a big difference in quality between content avaiable at dial-up speeds
and content available at broadband speeds. Such an assumption may not be
valid in the future where more customers will have broadband connectivity, and
content providers will possibly provide content at a range of quality levels, each
marginally different from the other. Pricing mechanisms for such markets is an
avenue for future research.
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