Experiences from the Design, Deployment,
and Usage of the UCSB MeshNet Testbed

Henrik Lundgren, Krishna Ramachandran, Elizabeth Belding-Royer, Kevin Almeroth,
Michael Benny, Andrew Hewatt, Alexander Touma, Amit Jardosh
Department of Computer Science
University of California, Santa Barbara

Abstract— In this paper we report on our effort and experience
to design, deploy and use our 30 node wireless mesh testbed,
the UCSB MeshNet. Compared to simulation, the construction
and utilization of a wireless mesh testbed poses many new
challenges. We discuss the challenges with distributed testbed
management, non-intrusive and distributed monitoring, and node
status visualization. These are vital components in a sustainable
wireless mesh testbed, but at the same time, non-trivial to
design and realize. As a case study, we present the UCSB
MeshNet architecture, including its management, monitoring,
and visualization systems. We share our lessons learned from this
effort and believe that they will be valuable to other researchers
who develop experimental wireless mesh networks.

I. INTRODUCTION

In wireless local area networks (WLANS), the wired Ether-
net is replaced by wireless connections through access points
(APs) that are deployed in designated areas. Each AP, in turn,
must be connected to a wired backbone network. This restricts
the deployment of the wireless network and the placement of
APs. A mesh network is a more flexible solution to provide
wireless network access. An infrastructure mesh consists of de-
ployed wireless mesh nodes that have minimal or no mobility,
and serve the purpose of a multi-hop infrastructure backbone.
Each mesh node has wireless router functionality and forwards
data packets on behalf of other mesh nodes. Typically, one or
more nodes have external network access and act as gateways
on behalf of the rest of the mesh network. End nodes, such as
laptops and PDAs, may use the mesh infrastructure, but are
not required to implement mesh functionality themselves. This
is in contrast to ad hoc networking, where even end nodes are
expected to implement functionality such as routing and self-
configuration. Figure 1 shows an example of a multi-hop mesh
network backbone that consists of dedicated mesh nodes.

Mesh network research has so far primarily relied on
simulation for evaluation and performance prediction. Simu-
lation is attractive since it enables test repeatability, parameter
exploration, and scalability. Real world stochastic factors, such
as wireless randomness and node mobility, can be controlled
and predicted through the use of models. However, models
are often simplified to reduce simulation time, or because of
the difficulties in accurately representing certain real world
phenomena. Another shortcoming is that most simulators lag
with respect to recent protocol improvements and new protocol
versions. Research studies have shown that simulation results
depend heavily on the simulator and models used [1], [2] and

P d{‘/' N ‘\:,,,,/’
\

& ,

Fig. 1. A wireless multi-hop mesh network backbone inside a building,
covering several floors. The black arrows indicate available radio links.

that some (performance degrading) effects may not be visible
until the protocols are exposed to real world settings [3].

Simulation studies therefore need to be complemented by
more realistic testing. This testing is vital to improve the
understanding of wireless network systems as it allows re-
searchers to study phenomena that may not be visible in
simulator settings. Emulation offers one possibility that rep-
resents a middle ground between simulation and real world
testing. Typically, wireless randomness and/or node mobility
are controllable through emulation [4], [5]. Another advantage
of emulation testbeds is that the software under test typically is
executed in its final operation system environment. To capture
the full effect of the wireless medium and node mobility,
however, real testbeds are needed. A few major efforts with
ad hoc network testbeds have been used to study various
performance effects in wireless and mobile settings [6]-[8].
The primary difference between ad hoc network testbeds and
mesh network testbeds is that the former typically consist of
mobile devices with limited battery power. This, in turn, means
that the lifetime of the ad hoc network is impeded by the
battery duration. In contrast, mesh testbeds typically constitute
more permanent infrastructures. For example, MIT’s Roofnet
consists of 30 stationary IEEE 802.11b nodes deployed in
apartments on the MIT campus and has been running since
2002 [9]. As another example, a PC-based 23 node IEEE
802.11a indoor mesh testbed was recently built by Microsoft
Research [10].

Our testbed, the UCSB MeshNet!, has been operational
since 2004 and is similar to the previous two mesh testbeds
with respect to the number of nodes and the fact that the
testbed is composed entirely of geographically distributed,
physical nodes. The UCSB MeshNet is built from a mix of
IEEE 802.11b/g Linksys WRT54G wireless routers and small
form-factor PCs, equipped with IEEE 802.11a/b/g PCMCIA
wireless network interface cards. The 30 nodes are distributed
in offices and research labs throughout the Engineering I
building on the UCSB campus. The Linksys WRT54G routers
have been upgraded with the OpenWRT? Linux distribution so
that they can run in ad hoc mode. All nodes have an ad hoc
routing protocol installed that establishes and maintains paths
between nodes. Currently, the Ad hoc On-demand Distance
Vector (AODV) protocol [11] is deployed on the testbed nodes,
but any ad hoc routing protocol implementation developed for
Linux can be used.

Design, deployment, administration, and operation of a
mesh network are challenging tasks. Typically, the mesh
network design is dependent on the hardware/software plat-
form and network deployment, as well as administration and
operation restrictions/requirements. For mesh network design,
there are hardware issues such as the selection of a hardware
platform on which the designated testbed software must be
able to execute and, at the same time, provide information
needed for experiment analysis. Another issue related to
mesh network design is the selection of the operational and
administrative functions that should be supported, which in
turn have an impact on the network architecture. For example,
network monitoring should be performed non-intrusively, and
network management operations, such as software deploy-
ment and remote command execution, should be robust. Both
monitoring and management solutions need to handle the
distributed nature of the mesh network. Another important
factor that affects the mesh network design and deployment
is whether a wired backhaul network is available. Wired
network connectivity may significantly affect node placement
during network deployment, or alternatively, the absence of
wired connectivity will affect the monitoring and management
software architectures.

In this paper, we report on our effort and experience to
design, deploy, administer, and operate our mesh network
testbed. As a case study, we describe the UCSB MeshNet
architecture, including its support services for management,
monitoring, and visualization. We found these services to be
vital to achieve efficient testbed operation and usage. The
most important lesson learned is that the trade-offs related
to platform selection, node deployment, and testbed software
design are all dependent on each other and thus need to be
jointly evaluated.

The remainder of this paper is organized as follows. In
Section II we discuss the challenges of design, deployment
and usage of a mesh testbed. We describe our UCSB MeshNet
testbed in Section III and summarize the lessons learned in
Section IV. Finally, we conclude the paper in Section V.

'http://moment.cs.ucsb.edu/meshnet/
’http://openwrt.org/

II. CHALLENGES AND EXPERIENCES FROM DESIGN,
DEPLOYMENT AND USAGE OF THE UCSB MESHNET

This section discusses the challenges and issues we experi-
enced during construction and use of our mesh testbed. First,
we discuss issues and trade-offs in platform selection and node
deployment. Next, we describe the design challenges of the
three support services that we found to be vital for efficient
testbed operation: management, monitoring and visualization.
In a mesh network, the design of these services poses chal-
lenges different from those in a wired network, mainly due to
the mesh network’s distributed, wireless, and multi-hop nature.
Furthermore, their design is affected by platform selection and
node deployment. Therefore, all trade-offs related to platform
selection, node deployment, and testbed software design need
to be jointly considered early in the planning of the testbed.

A. Platform Selection and Node Deployment

Two important issues to consider early in the planning of
a mesh testbed are hardware/software platform selection and
node deployment. Node price typically increases with node
capability. The number of nodes needed depends on the desired
network topology as well as the characteristics of the testbed
area. Since the testbed budget is typically limited, the node
price and the number of nodes needed becomes the main trade-
off. This section discusses these and other trade-offs.

a) Selection of the Hardware and Software Platforms.
There are three primary factors that influence the selection
of nodes: (i) node capability, (ii) planned number of nodes,
and (iii) node price. Typically, there is a trade-off between
desired node capability, planned number of nodes, and the
testbed budget. Nodes with high performance and flexibility
are usually desirable but are typically more expensive than less
capable ones. Thus, the testbed designer must weigh the node
capability against the planned number of nodes and the testbed
budget available. In this section, we focus our discussion on
node capability.

Node capability is important and should be part of the initial
testbed design. The most important node capabilities to con-
sider are: (i) hardware characteristics, (ii) operating system,
and (iii) configurable parameters. The hardware characteristics
are dependent on the node type. Typically, mesh nodes can
consist of stationary PCs, laptops, and/or dedicated hardware
such as ordinary WiFi access points modified to operate as
mesh nodes®. The advantages of dedicated hardware are that
it is cheap and that certain models are equipped with multiple
radio technologies. On the other hand, dedicated hardware is
hard to expand, e.g., increasing hard disk space or adding
new radio hardware may not be possible. Other trade-offs
with dedicated hardware are that it typically has less hard
disk space and processing power. At a minimum, there must
be enough hard disk space for the testbed software, such as
the operating system, routing protocol, traffic generators, and
testbed support system. By testbed support system, we mean
the software to operate, manage, and monitor the testbed. Hard

3The Linksys WRT54G can be upgraded to run the OpenWRT operating
system, which enables installation of new software and the ability to operate
the access point as a mesh node.

disk space is also needed to log monitoring and experiment
measurement data. Hard disk space constraints force solutions
where measurement data must be transfered to stable stor-
age frequently, even during experiment execution. Processing
power limitations affect the design of the testbed support
system, which should be designed to not significantly impact
the node performance during experiments.

The hardware dictates the operating systems that can be
supported. In turn, the operating system dictates the software
programs that can be used. For example, a dedicated wire-
less access point may support installation of a Linux-based
operating system. Although such an operating system may be
similar to a Linux distribution intended for a PC, the software
available for execution may still vary.

The ability to configure as many parameters as possible is
desirable. For example, transmission power adjustment allows
the modification of network connectivity and thereby easy
network topology variation. However, the ability to adjust
transmission power and the availability of WiFi information is
dependent on the WiFi network interface card (NIC). A related
issue is that different WiFi NICs may report information that
is not directly comparable between NICs. For example, WiFi
NIC vendors interpret and present signal strength differently.
Therefore, special care must be taken if the testbed consists
of nodes with heterogeneous WiFi hardware. However, testbed
settings with apparently homogeneous WiFi hardware can also
experience firmware diversity. This is due to the fact that WiFi
NIC vendors may upgrade to newer firmware versions as well
as completely change the chipset while still maintaining the
same WiFi NIC model name. This firmware version diversity
becomes an issue if the testbed network is to be expanded at
a later point in time or if some nodes need to be replaced.
This can be an issue at the initial purchase as well. Since the
firmware revision number is only available on the NIC itself,
retailers have no way to distinguish between different versions.
Even a “bulk purchase” can contain WiFi cards with different
firmware versions.

b) Hardware Deployment. The hardware deployment can
be an additional factor in the node platform selection process.
For example, the number of nodes needed can be influenced by
requirements to cover a specific geographic area, or to support
specific network topologies. Therefore, a priori knowledge
about the testbed area is important. The planning of the
physical placement of testbed hardware is commonly a trade-
off between the following three factors: (i) physical access to
testbed nodes, (ii) availability of power outlets and network
infrastructure, and (iii) planned network topology.

Unless there is a dedicated testbed area available, the
physical area is likely to have many constraints. In an in-
door testbed, the building construction significantly affects
the nodes’ transmission range. Another potential problem is
that nodes may breakdown, need to be replaced, rebooted, or
upgraded. Therefore, while many other operations on testbed
nodes can be realized via remote access, easy physical access
to the nodes is desirable. Remote access can be realized via
the testbed network itself, but is dependent upon the network’s
operational status. The availability of a pre-existing network
infrastructure enables out-of-band remote access. Another im-

portant factor to consider is that nodes require access to power
outlets.

The requirements described above are likely to put severe
limitations on node placement. In addition to these require-
ments, node placement is further impacted by the desired
network topologies. There are important benefits to having
redundant network connectivity and topology flexibility in the
testbed. For example, in a well-connected testbed, multiple
topologies can be created by adjusting the output transmission
power or turning on or off nodes’ network interfaces.

B. Testbed Support System Design

A good system to support the operation and management
of the testbed is important. We found that efficient and easy
management, automatic monitoring, and node status visual-
ization are the most important components of such a system.
The main challenge is to design these components such that
they are distributed, efficient, and have minimal impact on
testbed experiments. In this section, we discuss these three
components and their design challenges.

a) Management. A good management system is crucial
for efficient usage of the testbed. The management system’s
design is dependent on the properties it needs in order to
support the desired management operations. In this section, we
discuss the desired operations and the properties they require.

The primary operations that the management system should
support are: (i) node configuration, (ii) software deployment,
(iii) software execution, and (iv) fault recovery. First, all
nodes must have the correct configuration prior to each
new experiment. This requirement includes configuration of
traffic generators and monitoring/logging software, as well
as varying transmission power, and activation/deactivation of
network interfaces in order to control the network topology.
Without an automated tool for configuration, test repeatability
is jeopardized by the “human factor”. Topology control is an
essential part of the configuration. Since wireless links vary
over time and nodes may malfunction, a system must be able
to retrieve historic data on network connectivity as well as
current connectivity status. An automated tool for software
deployment reduces the deployment time and ensures that all
nodes run the correct software version. Software execution
is needed to perform configuration tasks as well as for ex-
ecuting programs, such as traffic generators and monitoring
tools. If the testbed consists of heterogeneous nodes, or if
nodes should be treated differently, the management tool
should support node differentiation. Significant time can be
saved if the management system is able to easily recover
from node faults and bring nodes back to a “good state”.
However, some faults cannot be handled remotely, e.g., if
a hardware failure occurs or if software causes a system
crash. Additionally, a management system can be designed to
handle starting/stopping experiment execution. A related issue
is node time synchronization, which might be needed for the
simultaneous commencement of an experiment on multiple
nodes and for analysis of time-sensitive data.

In order to support a management operation, the system
should have the following properties: (i) remote operation,

(i) in-band and out-of-band operation, (iii) a scalable ar-
chitecture, and (iv) a flexible, extensible, and reliable commu-
nication protocol. Remote operation enables a testbed user to
perform management operations without physical node access.
For remote management operation, out-of-band communica-
tion is desirable in order to not rely upon the testbed network’s
status. Furthermore, out-of-band communication minimizes
interference with the testbed network. However, this requires
the nodes to have an additional network interface and access to
an alternate network infrastructure. In-band operation enables
performance of the management operation regardless of these
requirements, but should be designed to have minimal impact
on the testbed network. A scalable management architecture
enables testbed growth without significantly increasing oper-
ation and communication complexity, or decreasing operation
efficiency. The communication protocol has to be flexible to
handle a multitude of different management tasks. Since new
management tasks may evolve over time, the management
protocol should be extensible and allow for new functionality
to be added without significant updates or changes to the
existing management system. Many management tasks require
reliable execution, i.e., the testbed user must know whether or
not an operation was successfully completed, and if so, be
certain that it was completed on all the requested nodes.

In summary, a management system requires remote access
to all testbed nodes to perform its operations. The communica-
tion between the management system and the testbed nodes,
and thus part of the management system’s design, depends
on whether out-of-band communication is possible. In turn,
this depends on the node platform and node deployment. The
trade-offs with in-band management are: greater impact on
the testbed network, the need for a routing protocol, and the
reliance upon a continuously sufficient degree of connectivity
between testbed nodes.

b) Monitoring. A monitoring system is essential in a
mesh testbed. Its goal is to collect and provide the testbed user
with the data needed to analyze node status and test results.
In this section, we discuss the essential operations and their
impact on the monitoring system’s design.

The monitoring system’s primary operations are: (i) (con-
tinuous) node status monitoring, (i) experiment measurement
data collection, and (iii) data transfer to stable storage. Node
status monitoring should include configuration and network
status, such as link quality, network topology, and available
link bandwidth. The collection of this information also re-
lates to the management system, which needs to know the
node status to perform node configuration and node fault
recovery. Continuous monitoring over time gives information
about parameter variability over both short and long time
periods. Parameter variability over time, such as link qual-
ity, is important when planning which nodes and network
topologies to use for experiments. The monitoring system
should also support experiment measurement data collection.
The difference between node status monitoring and experiment
measurement data collection is that the latter typically includes
collecting a large amount of data traffic. Therefore, experiment
measurement data collection typically requires a modified
or separate monitoring operation. However, leveraging the

monitoring system’s architecture for data collection is typically
beneficial. The purpose of both types of data collection is to
be able to analyze node status and events in the network. All
collected data, therefore, needs to be transfered from testbed
nodes to stable storage. Analysis tools can then access the
stored data and process it.

To support the operations discussed above, the monitoring
system needs to have the following properties: (i) minimal
impact on the testbed network, (ii) in-band and out-of-band
data transfers, and (iii) a scalable architecture. Additionally,
from a testbed user’s perspective, the following property is
desirable: (iv) availability of monitoring data in near real-
time. The impact of the monitoring tools on the testbed
network should be kept to a minimum. High CPU processing
and bandwidth consumption will impact the testbed network
such that results may be misleading. Therefore, monitoring
tools should strive toward minimal processing, bandwidth,
and storage requirements. An experiment measurement data
collection system, however, has different requirements com-
pared to continuous status monitoring. Typically, the amount of
data collected is larger and the time-granularity is smaller for
experiment data collection. As a result, either a larger amount
of node storage space, or a higher frequency of stable storage
data transfer, is required. The storage requirements for any
experiment of arbitrary length and with arbitrary data traffic
intensity typically cannot be guaranteed to be fulfilled. A
separate backhaul network for out-of-band data transfer allows
for more frequent and larger data transfers with a minimal
impact on the testbed network. However, the availability of a
backhaul network cannot be guaranteed in a distributed mesh
testbed. Therefore, the complementary option of in-band data
transfer is essential [12]. A scalable architecture enables the
testbed to grow and still support all desired operations, without
increasing the impact on the testbed network. Supporting both
in-band and out-of-band data transfers is one part of a scalable
architecture since it relaxes the need for backhaul network
availability to all testbed nodes. However, in-band and out-
of-band data transfer solutions must still be scalable per se.
From a testbed user’s perspective, node status information
should be available in real-time. Typically, frequent transfers
of small amounts of data have little impact on CPU processing
and bandwidth consumption. Ideally, experiment measurement
data should also be available in near real-time. However,
delivering this data may result in higher CPU processing load
and bandwidth consumption.

In summary, the trade-offs to consider for monitoring sys-
tem design clearly relate to platform selection and node de-
ployment. One trade-off is the amount of data collected versus
the device storage capacity and the data transfer frequency.
In turn, the amount and frequency of data transfer has to
be considered against bandwidth consumption and testbed
impact. Another trade-off is the impact of CPU processing
for the monitoring system versus the processing capacity of
the testbed node.

c) Visualization. The goal of the visualization system is
to help the testbed user analyze node status and events in the
testbed by graphically present monitoring data.

The visualization system’s primary operations are: (i) mon-
itoring data retrieval, (ii) data processing, and (iii) data
presentation. The monitoring system transfers monitoring data
to a repository. The visualization system, in turn, accesses the
repository and processes the data. Finally, the visualization
system graphically presents the processed data to the testbed
user.

The primary system properties for the visualization system
include: (i) real-time and historical data support, (i) intuitive
presentation of results, (iii) scalable and extensible architec-
ture, and (iv) minimal impact on the testbed network. The
visualization system should support processing and presen-
tation of both real-time and historical data. Visualization of
the current status requires that monitoring data is available
in near real-time. The update frequency of status information
depends on the monitoring system’s frequency of data transfer
to the repository. Historical data may be retrieved in a manner
similar to real-time data by simply changing the time span for
which data is to be retrieved. However, historical data may
require additional data processing, e.g., to provide statistics for
arange of data points. As a result, the presentation of historical
data may differ from that of real-time data. Regardless of the
type of data to present, the key property of graphical data
presentation is to be intuitive. Ultimately, the visualization
tool should be more time-efficient than manually parsing raw
monitoring data, and more intuitive and easier to review than
a text-based alternative. The design and realization of such
a presentation tool is an aesthetic challenge. Another design
challenge is to make the system architecture both scalable
and extensible. It should be scalable in terms of simultaneous
accesses to the system, as well as in terms of the number of
nodes and the information displayed by the tool. An extensible
architecture enables new display information to be added,
e.g., experiment-specific data. The final property is that the
system should have minimal impact on the testbed network.
Typically, the visualization system operates separately from
the testbed since neither data retrieval nor visualization include
any testbed nodes. However, the data type and availability
requirements may, in turn, influence the monitoring system’s
impact on the testbed network.

In summary, the visualization system relies on a monitoring
system to provide data to be displayed. The monitoring system,
in turn, may impact the testbed network, depending on the
requirements of the visualization system. Another trade-off is
how the data processing is divided between the monitoring
system and the visualization system. The monitoring system
should not process data such that any (statistical) information
is lost. On the other hand, data pre-processing decreases the
load on the visualization system.

III. CASE STUDY: THE UCSB MESHNET TESTBED

The previous section discussed the design challenges for
a mesh network testbed, many of which we experienced
during the construction of our own testbed. In this section,
we provide a case study about the UCSB MeshNet testbed,
including the operation of its support services. Figure 2 shows
an overview of the testbed architecture. The three primary

MeshMan
Proxy Client

MeshMon Node
e

Web Server
Meshviz Mesh Nodes
Client
Database
Measurement MeshViz
data Server
Management
data y| MeshMan || MeshMan
Server Proxy Server

Mesh Server

User Terminal

Fig. 2. Overview of the UCSB MeshNet architecture showing the logical
placement and the out-of-band communication paths for the MeshMan,
MeshMon, and MeshViz components.

components are: (i) the management component (MeshMan)
for node configuration, software deployment, remote software
execution, and testbed access control; (ii) the monitoring
component (MeshMon) that periodically collects node/network
status, assists in experiment data collection during tests, and
transfers monitoring and experiment data to stable storage (a
database); and (iii) the visualization component (MeshViz) that
displays current network/node status by using the information
collected by the monitoring component. The three components
were developed such that they can use, but do not rely on, any
pre-existing network infrastructure. We describe the testbed
platform and deployment, followed by a description of each
of the three primary components.

A. Testbed Platform and Deployment

The testbed consists of 30 IEEE 802.11a/b/g nodes. Cur-
rently, there are two types of nodes. Half of the nodes are
IEEE 802.11b/g Linksys WRT54G wireless routers. The other
half of the nodes are small form-factor Linux PCs, equipped
with multiple IEEE 802.11a/b/g PCMCIA cards. The Linksys
routers have been upgraded to run the Linux-based OpenWRT
operating system, which enables them to run in ad hoc mode.
Since both types of nodes are running Linux-based operating
systems, minimal (or no) software modification is needed for
cross-platform sharing. To create and maintain multi-hop paths
between nodes, each node runs an ad hoc routing protocol. The
use of an ad hoc routing protocol, instead of static routing,
enables the network to be easily extended to include new
nodes, support changes in node participation, and include
mobile nodes. To this end, we have successfully used the
Kernel-AODV* implementation. However, any Linux-based ad

“http://w3.antd.nist.gov/wctg/aodv_kernel/

hoc routing protocol implementation can be used on the PCs
or cross-compiled for OpenWRT on the Linksys routers.

The trade-off between the Linksys routers and the PCs is
that the former have lower purchase cost, but less memory and
processing power. The available flash memory on our Linksys
routers is only 4MB, but this is still large enough to fit the
OpenWRT system and our own testbed software, including
megabyte-size log files. Since our testbed software system
is not CPU-intensive, the Linksys routers’ lower processing
power has minimal impact on performance.

The testbed nodes are distributed indoors throughout five
floors in the Engineering I building on the UCSB campus.
The node density is deliberately high to facilitate multiple
possible paths between nodes. The environment consists pri-
marily of offices and research labs. Each node is equipped
with a management network interface and is positioned such
that it can connect to a pre-existing network infrastructure.
The pre-existing network infrastructure acts as a backhaul
network that enables communication with the nodes without
introducing additional data traffic in the testbed network. The
backhaul network is primarily used by the management and
monitoring components of our testbed. The backhaul network
for a majority of the nodes consists of wired connections to
existing subnets. However, some nodes are currently located in
areas where wired connectivity is not available. The backhaul
network for these nodes consists of a wireless connection to
an existing wireless LAN. One advantage for the use of wired
connections for the backhaul network is the minimal delay
variations between nodes, especially when compared to the
wireless links. This is particularly important when running a
time synchronization protocol to synchronize the nodes. Time
synchronization between nodes is needed to avoid clock skew
and for calculation of metrics such as packet transmission
delay. We are currently using the Network Time Protocol
(NTP) to synchronize our testbed nodes.

Because many nodes are in locations where physical access
is restricted, we have installed remote reboot devices to control
the power supply to the testbed nodes. In the event that a node
hangs or becomes otherwise inaccessible, switching off/on a
node results in the node returning to a fully operational state.
This component has proven invaluable during new software
installation and debugging.

B. MeshMan

The goal of our management system, MeshMan, is to
simplify the steps involved in daily testbed operation and
experiment execution to the largest extent possible. Figure 3
illustrates the MeshMan architecture. MeshMan consists of
two main components. The first is the MeshMan Server, which
resides on a central server and from which all the management
operations are executed. The second is the MeshMan Proxy,
which resides in part on the MeshMan server (proxy server)
and in part on each testbed node (proxy client). The MeshMan
Proxy implements all functionality for handling requests from
the management server regarding node configuration, software
deployment, and software execution. In this section, we dis-
cuss these two components and their operation in more detail.

__Mesh Node _
Plug-in
Mesh Node
"""""""""""" MeshMan
Pl Proxy Client
Mesh Node — { ——— + T
"""""""""""" i1 MeshMan
i - ! |Proxy Client Re-broadcast data
Local delivery Plug-in b]
to designated |
° eflgn.ae i1 MeshMan
plug-in | Proxy Client Re-broadcast data
A//R(-:Iiable broadcast of data
MeshMan

Proxy Server

Database

Transfer data to be deployed/executed

Management operations Management

data

MeshMan Server

Read node information

Fig. 3. The MeshMan architecture. As illustrated, the MeshMan Proxy Server
communicates with the MeshMan Proxy Client through reliable broadcast
in the in-band mode of operation. In the out-of-band operation, the reliable
broadcast is replaced with TCP communication over a wired backhaul
network.

a) MeshMan Server. MeshMan allows network adminis-
trators to manage the testbed through a single, simple interface.
The primary supported operations are node configuration,
software deployment, remote software execution, and group
ID assignment. To prevent testbed users from using nodes or
performing tests that interfere with any test currently being
executed, the management system can force access control for
specific nodes or the whole testbed. This access control is a
crucial first step toward enabling remote testbed access.

With group ID assignment, nodes can be configured to
belong to one or more groups. This enables operations, such
as configuration, updates, and access control, on a selection
of nodes. For example, if software should only be deployed
on specific nodes, placing these nodes into the same group
enables the deployment of the software to these nodes in a
single operation.

b) MeshMan Proxy. The goal of the MeshMan Proxy is
to have a transparent and efficient way to transfer data and
deploy software to all testbed nodes without knowledge of the
current network topology. The MeshMan Proxy can operate
both in-band and out-of-band. Figure 3 shows the architecture
and data propagation through the testbed network using the
in-band solution. However, as we discuss later in this section,
out-of-band management is also supported.

The MeshMan Proxy consists of a proxy server running
on the MeshMan node and proxy clients on each testbed
node. The proxy client on each node listens for calls from
the proxy server. Upon reception of data packets from the
proxy server, the proxy client performs two actions. First, if
the node has not seen this packet before, it re-broadcasts the
packet. Second, the node checks to see whether it belongs to
the group of nodes for which this packet was intended. If so,
it stores the packet until it has received all the packets that

are a part of this specific transmission. Once all packets have
been received, the proxy client defragments the received data
and transfers it to the local application for which this data was
intended (this information is provided in the packet header). If
all the data was successfully received and delivered to the local
application, the proxy client sends an acknowledgment to the
proxy server indicating success. In the out-of-band solution,
the MeshMan proxy server communicates with each testbed
node individually and directly, through the backhaul network.

For flexibility and extensibility, each testbed node has a
range of ports to which applications can listen. The data
to be pushed into the network is tagged with information
about to which group of nodes this data is intended and to
which receiver-side application this data should be delivered.
The proxy server then fragments the data and forwards each
piece to the proxy clients listening on each node. When in-
band mode is used, the data forwarding is based on reliable
broadcast. The proxy server waits for acknowledgments from
all intended receivers to ensure that they receive the data. If
any data delivery fails, the proxy server can be configured to
try to deliver the data through any alternative delivery options
available. The software deployment can be initiated from a
remote machine since the data to be disseminated do not have
to reside on the MeshMan proxy server.

The approach of the proxy system handling reliable data
transfer and the proxy clients handling data reception, de-
fragmentation, and delivery to the application has several
benefits. These benefits include the following: (i) the receiver-
side applications can be developed more easily since they do
not have to deal with reliable data transfer and fragmentation;
(ii) receiver-side applications can be easily incorporated by
listening on a specific port; (iii) receiver-side applications can
be tailor-made to perform certain actions, such as software
installation and command execution; (iv) the reliable broadcast
data dissemination allows network communication to occur
in mesh networks where no backhaul network is available;
and (v) any communication between the proxy and proxy
receivers occurs over UDP and thus implements best-effort
reliability. Using UDP avoids the TCP congestion control issue
in wireless networks. Furthermore, depending on the network
topology, it may be more efficient to utilize broadcast com-
munication rather than to set up one data flow per destination,
as required by TCP.

C. MeshMon

The goal of MeshMon is to collect node and network
status information, and transfer this data to stable storage for
analysis. The MeshMon component periodically collects status
data from each individual testbed node. The collected data
is transfered to a database, which in turn can be queried by
the MeshMan and MeshViz components. MeshMon can easily
be extended to support collection of experiment measurement
data. However, this is currently not implemented in our
testbed.

Figure 4 shows the MeshMon architecture and its primary
components. The MeshMon architecture is divided into three
separate components that interact with each other. The first is

Mesh Node Mesh Node Mesh Node

Send data
and commands
to Node Manager _}

Proxy Client ‘ Proxy Client ‘ Proxy Client

Update
configuration |
of Data Collector |

Wired management network

- Transfer data to stable storage

Fig. 4. The MeshMon architecture showing the communication between the
three components: Node Manager, MeshMon Data Collector, and MeshMon
Data Sink. The Proxy Client is the MeshMan component, which here is used
to remotely send instructions or data to the Node Manager plug-in.

Transfer of aggregated
measurement data
from mesh nodes

Database

Measurement
data

the Data Collector, which resides on each testbed node and is
responsible for aggregating monitoring data and transferring it
to the Data Sink. The second is the Data Sink, which resides
on the central testbed server and is the sink for all aggregated
monitoring data that arrives from the testbed nodes. The Data
Sink is responsible for the transfer of collected data to stable
storage. The third is the Node Manager, which resides on each
testbed node and is responsible for managing the monitoring
tools on each testbed node. The Node Manager is an example
of a MeshMan plug-in. Figure 4 illustrates the MeshMon
architecture for out-of-band operation using a wired backhaul
network. For the in-band operation of MeshMon, a routing
protocol is required to communicate to or from the testbed
nodes. We now describe each of the three components in more
detail.

a) MeshMon Data Collector. The Data Collector runs
on each testbed node and is responsible for gathering current
node and link status as well as measurement data. The Data
Collector gathers information at periodic intervals, thereby
providing a view of the wireless settings and the node and net-
work status over time. Information about the wireless channel,
such as the network BSSID, network ESSID, radio frequency,
and noise level is passively collected through existing tools
included in the operating system. Node and network status,
such as neighbors, routes, and link qualities, are collected
through both routing protocol information and active probing
of the network. One challenge with active probing is to limit
the overhead such that it does not significantly affect overall
network performance. The data collection periodicity and the
collected metrics can easily be varied through the MeshMan
interface. Once the data is aggregated, it is sent to the Data
Sink. The data can be transfered either through a management
network or through the mesh network itself. In order to
not interfere with the mesh network, a separate management
network is preferable.

b) MeshMon Data Sink. The Data Sink exists on a
central server connected to the mesh network. Its purpose is
to receive data sent by the Data Collector on each testbed
node and transfer the data to stable storage. The Data Sink

MeshViz Client MeshViz Server

Measurement
data

— .
Macromedia Register at se

! Read

Flash Client

Push status

Fig. 5. The MeshViz architecture illustrating the logical division of
functionality between the MeshViz Client and the MeshViz Server.

waits for connections from the Data Collector and, once it
has received data from all nodes, stores the data in an SQL
database. In the case of in-band operation, the Data Sink
should preferably be located on one of the mesh nodes that has
gateway functionality. Then, the Data Sink has connectivity
with both the Data Collector and the database.

¢) Node Manager. The Node Manager is an application
for remote management of monitoring tools and node settings.
It is located on each testbed node and is controlled via
the MeshMan system. The monitoring tools can be started,
stopped, and reconfigured. Additionally, new monitoring tools
can be deployed through this interface. The remote manage-
ment of the monitoring tools is crucial since the ability of
a testbed user to physically service each node may not be
possible as the number of testbed nodes increases. The Node
Manager allows for a testbed user to query for additional node
or link status information, e.g., if a particular node is behaving
anomalously.

D. MeshViz

The MeshViz Module is a display tool for the mesh network.
It enables visualization of the current state of the network.
Such a view includes all network metrics collected by Mesh-
Mon and allows the investigation of metric variations over time
without the need to manually parse collected data. Figure 5
shows the MeshViz architecture. The MeshViz consists of two
components: the MeshViz Client, which is the display tool,
and the MeshViz Server, which pushes information updates to
MeshViz Clients.

a) MeshViz Client. The MeshViz client resides on a
web server and consists of a Flash player, an XML-based
configuration file, and a collection of JPEG-based maps. The
configuration file specifies the initial setup of the flash player
and the information to be displayed. The display includes
information such as the nodes, their IP addresses, network
maps, and node positions. The MeshViz client can alternatively
be downloaded to the end user’s desktop and run locally.
The configuration file and the maps can then be edited to
provide a customized view of the network. The MeshViz client
periodically connects to the MeshViz server to obtain status
updates.

b) MeshViz Server. The MeshViz server accepts connec-
tions from the MeshViz clients. The database that contains
the network status information, collected by MeshMon, is
periodically queried for status information. This information
is formatted into an XML file, which is then propagated to the
MeshViz clients for display. The status information pushed to
the MeshViz clients consists of incremental updates. The use

of these small updates decreases bandwidth consumption and
client processing. Additionally, there is no need to change or
rebuild the tool when a new node is installed or a change to
an existing node occurs.

IV. LESSONS LEARNED

In this section we share the most important lessons learned
from construction and usage of our testbed. The lessons
learned range from unexpected problems to testbed operation
efficiency.

a) Platform selection, node deployment, and testbed soft-
ware design depend heavily on each other. The number
of planned nodes may depend on the desired testbed area
and network topologies. There is also a trade-off between
the number of nodes and the node price. In turn, the node
price typically increases with node capability. Furthermore, the
testbed software design is influenced by the node capability
and the availability of a backhaul network for out-of-band
communication. In turn, the latter depends on the testbed area
and may affect the placement of nodes during deployment.
Since all these pieces relate to each other, we recommend the
joint evaluation of all trade-offs early in the testbed planning
phase.

b) Initially, 70-80% of the time is spent solving hardware
or software related problems. We have found that in the
early stages of the testbed usage a considerable amount of
the time is spent investigating various unforeseen problems
related to either hardware or software. The best way to
reduce this period is through experience sharing and careful
planning and selection of the hardware and software platforms.

¢) Documentation of the testbed and its operation is
invaluable. The testbed will evolve over time, so tracking all
changes and updates of the testbed, as well as documenting
any pending issues and methods of circumvention, is vital.
Documentation of the testbed and its operation reduces
the need to have the testbed administrator available when
someone runs experiments or uses the testbed. We recommend
the use of a web-based documentation system, such that all
testbed users can continuously both add and acquire testbed
information.

d) A test and measurement phase should follow testbed
deployment. There are likely several unknown environmental
and time-dependent factors that impact testbed operation
and its performance. Therefore, we recommend testbed
deployment to be followed by a “testing phase”, where the
testbed operation and performance are closely monitored for
an extensive period of time to reveal unexpected changes and
instability.

e) Link quality monitoring is crucial. Link quality
monitoring is important for two main reasons. First, when
selecting the nodes and network topologies to be used in an
experiment, consideration of both current and historic link
information to estimate the quality and stability of the links

is important. Second, when analyzing test results, comparison
of link conditions between test runs is necessary to determine
test repeatability. For efficient acquisition and interpretation
of link quality information, we recommend that the testbed
include monitoring and visualization systems.

f) Seemingly uninteresting data may become interesting.
Although we consider link quality to be the primary network
parameter to be monitored, we recommend recording all
possible information as long as the data collection does not
impact the test results. Information that at first may seem
irrelevant or uninteresting can be painfully discovered to
be crucial in the analysis phase. For example, although an
experiment may focus on examining network or transport
layer functionality/performance, MAC layer information may
become necessary to fully understand and explain the test
results.

g) Optimization and automation of experiment execution
will save significant time and improve repeatability.
A considerable percentage of the total time of a set of
experiments is commonly related to parameter exploration,
dry-runs, and tuning. However, during “production
experiments”, significant time can be saved through
automation and optimization of as many steps as possible.
Most time-consuming is typically the operations that require
manual involvement. Minimizing manual involvement also
improves test repeatability. Hence, we advise the automation
of all possible operations in the process of test optimization.
This automation involves tasks such as testbed configuration,
scheduling of experiments, measurement data collection, and
transfer of measurement data to stable storage.

h) Remote node reboot capability saves significant time.
Testbed nodes may break down or become unaccessible
for various reasons such as network interface overload, OS
thrashing, and storage space shortage. During early testbed
stages and new software development, there is an increased
risk of node faults. We recommend the use of a remote
node reboot system that does not require physical or network
access to the node. Such a system saves considerable time,
especially in a testbed where physical node access is restricted.

i) The “BSSID problem” may partition your network.
If a node loses contact with all other nodes in the network,
it will search for other nearby networks. As a result of
the search, it may join a nearby network or start its own
network. In either case, it will change its BSSID. Joining
another network may result in a change of channel; it can
also start its own network using the same channel. Because
of the BSSID change, the node may not re-join the old
network even if it regains contact with it. Hence the network
becomes partitioned. Currently, there is no known clean
solution to this problem. If the testbed experiences BSSID
partitioning, we recommend the operation of WiFi cards in
the “pseudo-IBSS” mode, which circumvents the problem by
omitting the IEEE 802.11 beacon and BSSID mechanism.
However, pseduo-IBSS is a non-standard, proprietary ad

hoc mode and is not be available in all WiFi chip-sets and
network drivers.

J) The reported WiFi data rate can be confusing. If the
WiFi data rate is checked using the iwconfig Linux utility
directly after an explicit data rate change, iwconfig may
not return the newly selected data rate. We have found that
the reported data rate is not updated until there has been
at least one packet sent over the WiFi interface. However,
we have also observed that the reported data rate may be
different from the data rate at which the NIC operates, even
though packets have been sent over the interface after the data
rate has been updated. Therefore, we recommend performing
experiments to verify the operation of the WiFi hardware and
driver with respect to data rate reporting and data rate changes.

V. SUMMARY

Wireless mesh networking is a promising technology for
ubiquitous wireless network access. To increase the under-
standing of real world factors in these networks and to
address the limitations of current simulators, the research
community has started to conduct more experimental studies.
Construction of a wireless mesh testbed is a challenging task.
Issues range from platform selection and node deployment,
to testbed design for efficient and useful operation. In this
paper, we share our experiences gained from the design and
construction of the UCSB MeshNet testbed. We discuss design
challenges with management, monitoring, and visualization
systems in a mesh testbed, and describe how such systems
are designed in the UCSB MeshNet. Our lessons learned
include unexpected problems, such as network partitioning,
as well as testbed operation efficiency improvements, such
as remote node reboot. The most important lesson learned
is that the choices made regarding either platform selection,
node deployment, or testbed software design typically have a
significant impact on the requirements and/or the design of the
other two parts.

Only a handful of mesh network testbeds currently exist and
experimental mesh network research is still in its infancy. We
expect to see the deployment of more mesh network testbeds
in the near future. We hope that our experiences shared in
this paper increase the research community’s understanding of
mesh testbed construction challenges and lead to the construc-
tion of sustainable and more advanced mesh network testbeds
in the future.

ACKNOWLEDGMENTS

The authors wish to thank Rocio Garcia Ruiz for her work
on the mesh database, and Ian Chakeres, Stefan Karpinski,
Prashanth Aravinda Kumar, Kimaya Sanzgiri, Irfan Sheriff and
Yuan Sun for their input to this paper.

Funding for this work is through the NSF Network Research
Testbeds (NRT) grant ANI-0335302 as part of the WHYNET
project, as well as NSF NeTS Award CNS-0435527 and NSF
Career Award CNS-0347886.

[1]

[3]

[4]

[5]

[7]

[9]

(10]

[11]

[12]

REFERENCES

T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communications and Mobile
Computing (WCMC): Special issue on Mobile Ad Hoc Networking:
Research, Trends and Applications, vol. 2, no. 5, pp. 483-502, 2002.
M. Takai, J. Martin, and R. Bagrodia, “Effects of wireless physical
layer modeling in mobile ad hoc networks,” in Proceedings of the ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), Long Beach, CA, USA, October 2001.

H. Lundgren, E. Nordstrom, and C. Tschudin, “Coping with communica-
tion gray zones in IEEE 802.11b based ad hoc networks,” in Proceedings
of the 5th ACM International Workshop On Wireless Mobile Multimedia
(WoWMoM), Atlanta, GA, USA, September 2002.

Y. Zhang and W. Li, “An integrated environment for testing mobile ad-
hoc networks,” in Proceedings of the ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), Lausanne,
Switzerland, June 2002.

D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network
protocols,” in Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC), New Orleans, LA, USA, March 2005.
D. Maltz, J. Broch, and D. Johnson, “Quantitative lessons from a
full-scale multi-hop ad hoc network testbed,” in Proceedings of the
IEEE Wireless Communications and Networking Conference (WCNC),
Chicago, IL, USA, September 2000.

H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C. Tschudin,
“A large-scale testbed for reproducible ad hoc protocol evaluations,”
in Proceedings of IEEE Wireless Communications and Networking
Conference 2002 (WCNC), Orlando, FL, USA, March 2002.

S. Jadhav, T. X. Brown, S. Doshi, D. Henkel, and R. George, “Lessons
learned constructing a wireless ad hoc network test bed,” in Proceed-
ings of 1st Workshop on Wireless Network Measurements (WiNMee),
Trentino, Italy, April 2005.

D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
level measurements from an 802.11b mesh network,” in Proceedings
of the ACM Annual Conference of the Special Interest Group on Data
Communication (SIGCOMM), Portland, OR, USA, August 2004.

R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics for
static multi-hop wireless networks,” in Proceedings of the ACM Annual
Conference of the Special Interest Group on Data Communication
(SIGCOMM), Portland, OR, USA, August 2004.

C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (aodv) routing,” IETF RFC 3561, July 2003.

K. Ramachandran, E. Belding-Royer, and K. Almeroth, “DAMON:
A distributed architecture for monitoring multi-hop mobile networks,”
in Proceedings of IEEE International Conference on Sensor and Ad
hoc Communications and Networks (SECON), Santa Clara, CA, USA,
October 2004.

