The Active Information System (AlS):
A Model for Developing Scalable Web Services

Sami Rollins, Robert C. Chalmers, Josep M. Blanquer, and Kevin C. Almeroth
Department of Computer Science
University of California
Santa Barbara, CA 93106-5110
{srollins, robertc, blanquer, almeroth} @cs.ucsh.edu

Abstract

The World Wide Web has become a primary venue for dis-
seminating information to large numbers of users. From
news stories, to music videos, to driving directions, more
and more people are turning to the web to find informa-
tion they need in their day-to-day lives. As web-based ser-
vices become more complex, the traditional web model is
becoming insufficient. There is an increasing demand for
a model that supports large-scale, push-based data deliv-
ery combined with user-specific customization. In this pa-
per, we describe our model, the Active Information System
(AIS). The AIS is a model for web services that supports
scalable information dissemination and dynamic user inter-
action. We evaluate our model by illustrating its use in de-
veloping a scalable, realtime auction application with func-
tionality far beyond what is possible today.

1 Introduction

The World Wide Web is expanding to support a variety of
services beyond static content distribution. Services such
as online electronic commerce and distributed collabora-
tion applications demand technological advances to sup-
port user interactivity, personalization, improved perfor-
mance, and scalability. Moreover, the traditional pull-based
method of content delivery is becoming insufficient. In-
formation such as stock quotes changes periodically and
should use push-based content delivery. In addition, some
applications support user modification of disseminated in-
formation. An example might be a chat server where users
continuously post new information. Waiting for the user
to request or pull such information could result in missed
updates if users do not poll frequently enough. The server
could also be overloaded if users poll too frequently.

In this work, we focus on developing a model to
implement scalable, push-based information dissemination
applications. Our goal is to move away from traditional
web techniques because they have a number of limita-
tions. First, the repeated one-to-one (unicast) delivery of
large information bases is wasteful of server and network
resources. Second, the current web model supports only
limited user-to-user interaction. Our approach attempts to
overcome these limitations. At the heart of our model is an

interactive, dynamic information base that allows users to
interact not only with the system, but with each other. In
addition, our model provides multicast-based support for
large-scale data delivery to a large user base. In this way,
the system can handle large numbers of requests without
becoming overloaded.

Our model partially leverages the properties of the In-
teractive Multimedia Jukebox (IMJ)[1]. The IMJ is a novel
architecture that addresses the issues of scalability and flex-
ibility. The IMJ delivers on-demand programs via multicast
and uses a WWW-based interface to schedule requests us-
ing a jukebox paradigm. Our goal is to generalize the IMJ
model to develop a new model that achieves the IMJ's ben-
efits of scalability and flexibility while supporting a variety
of systems beyond streamed video-on-demand. We call our
approach the Active I nformation System (AlS). To show the
usefulness of our model, we describe its use in develop-
ing a realtime auction application. The capabilities of our
AlS-based auction system far surpass functionality found
in current online auctions.

This paper is organized as follows. Section 2 dis-
cusses the IMJ and its novel functionality. Section 3 de-
scribes the AIS model. Section 4 illustrates the implemen-
tation of a realtime auction. Section 5 gives an overview of
other work in this area and Section 6 concludes the paper.

2 Interactive Multimedia Jukebox

The Interactive Multimedia Jukebox (IMJ)[1] defines a
novel paradigm for multimedia content scheduling and
dissemination. It is an Internet-based system that pro-
vides a hybrid between Video-on-Demand (VoD) and tra-
ditional broadcast television. Similar to other scalable VoD
architectures[2], clients can use the system to schedule
video content to be played using multicast[3]. Alterna-
tively, users can view the schedule of programs requested
by other users and choose to tunein to an already scheduled
program.

The aim of the jukebox is to provide a scalable, flex-
ible solution to multimedia content dissemination. The
paradigm balances two metrics: program delivery and pro-
gramscheduling. The number of channels where programs
may be played is fixed avoiding the problem of allocating
n sets of resources (e.g., server capacity, bandwidth) for m

_ w;?—
E Scheduling Eﬁf‘ﬁ

Control

. . Unicast Schedule
MulticastVideo andCatalogue

Distribution Distribution

\

MulticastCapable
Network

Receivers

Figure 1. The IMJ architecture.

users. However, by allowing users to make requests, we
achieve more flexibility than a broadcast solution. A limit-
less number of users may take advantage of the system at
a given time. The most significant disadvantage is a longer
waiting time before a user's preferred program is played.
This is offset by the ability to watch any program already
playing on an existing channel.

Based upon experience with the IMJ, we have identi-
fied four novel functions of the IMJ that can be generalized
and extended to support a broader range of applications.

Catalogue Dissemination. As the catalogue of pro-
grams grows and as the information available about each
item extends beyond a simple text description, a number
of scalability issues arise. Distributing the entire catalogue
each time a user requests it will place too much demand
on vital resources such as network bandwidth. The chal-
lenge is to find ways to reduce the need to send the entire
catalogue each time it is requested, or to satisfy multiple
requests for the catalog with one transmission. Several op-
tions exist including creating a multicast stream for the cat-
alog itself; segmenting the catalog into static parts; or only
delivering the results of a user-selected query.

Request Processing/Scheduling. To provide a level
of flexibility over the standard Pay-Per-View or traditional
broadcast television model, users may issue requests to
schedule a program of interest. The scheduler is de-
signed with the ability to support multiple scheduling
schemes: from first-come-first-served to schemes allow-
ing users to vote on which programs they would like to
have scheduled[4]. As the number of users making requests
grows, the scheduling scheme may be modified to balance
the tradeoff between the system resources required and the
time a user must wait to watch a scheduled program.

Schedule Dissemination. Even though the catalogue
of programs is a static information set, where the schedule
of programs is dynamic, as the number of users monitor-
ing the schedule gets large or the schedule itself grows in
size, the same distribution scalability problems become an
issue. Therefore, we can take advantage of similar distri-
bution techniques. For example, only part of the schedule

needs to be delivered if a user is interested in only a sub-
set of channels. However, a difference between catalogue
and schedule dissemination is that schedule dissemination
requires incremental updates for all users. This implies that
a push-based system is much more efficient than requiring
users to frequently re-load web pages.

Video Streaming. The purpose of the IMJ is to allow
users to request a service, in this case the playing of a video
stream. The schedule determines when the service is to
occur, and creates the event that triggers the initiation of the
service. Streaming video is a costly operation that requires
a great deal of resources, primarily network bandwidth and
server capacity. The IMJ uses multicast delivery to solve
resource bottleneck problems. By satisfying many users
with one stream, good scalability can be provided. If this
model can be extended beyond video to other objects, other
services based on this model can benefit.

3 Activelnformation Systems

We define the behavior of the IMJ as that of an Active Infor-
mation System (AIS). From an abstract point-of-view, the
IMJ provides a user with the ability to dynamically request
services based upon information gathered while browsing
a static library of information. A request for static informa-
tion generates a set of multimedia objects to be transmitted.
Requests may also initiate the start of an activity. Interestin
these activities, coordinated around a scheduled time, may
be shared by any number of users.

There are a number of existing web-based services
that follow the AIS model. For example, a large-scale chat
server might first provide users with a catalogue of chat
rooms. Chat rooms can be long-lived general discussions
or they can be specific groups moderated by some well-
known person. Users request to join a particular discus-
sion and the activity is the exchange of messages among
all members. In this case, the activity is not even centrally
delivered by the AIS system.

While we recognize that large-scale, web-based ap-
plications such as chat servers have been implemented and
deployed, the typical solution to problems of scale is to
simply buy more hardware. Web sites such as eBay em-
ploy colossal server farms to provide constant availabil-
ity to an ever increasing client base. With more hardware
also comes the responsibility of developing more complex
and robust software to deal with issues such as consistency
between replicated databases. Our claim is that by im-
plementing these kinds of services using the scalable AIS
model, both the hardware and software requirements can
be greatly reduced. Using the same infrastructure, the AlS-
based application can service a larger number of users than
a traditional system. Furthermore, not only can scalabil-
ity be improved, but the user experience can also be sig-
nificantly extended. For example most online auctions do
not have realtime auctions in which bidders can *“see” each
other. The remainder of this section describes the frame-
work for a generic AIS and then how it can be applied to
existing web-based services.

Dynamic .
Service Information Infiﬁf;ﬂaction
Activity — Base @ Base
T

-

MulticastCapable

Users

Figure 2. The architecture of a generic AlS.

3.1 TheAlSMode

Section 2 identifies the four components and respective
functions of the IMJ. Our challenge is to generalize the
components of the IMJ and the functions they support to
formalize a generic architecture for an AIS system. To
support the widest set of applications, the AIS defines five
components. The AIS components are analogous to the
IMJ components, however the IMJ scheduler is divided into
two components, one to manage static information, and one
to manage dynamic information. We describe the AIS com-
ponents shown in Figure 2:

1. Scheduler: The scheduler receives/processes requests
to view or change the dynamic information base.

2. Back-end: The back-end receives and processes re-
quests for static content.

3. Event Server: The event server executes an
application-specific service activity.

4. Proxy: The proxy components act as application-
layer multicast relay sites in the network and can pro-
vide caching, aggregation, content tailoring, etc.

5. Client - The client provides user interaction with the
system through an application-specific interface.

The AIS also generalizes the functions of the IMJ to sup-
port a wider application base. The functions of the AIS are
as follows:

Static Content Distribution. The AIS model as-
sumes a stable back-end information source such as a
database. Users begin interacting with the system by issu-
ing requests for information from that source. In the IMJ,
this was the program database. Information requests may
be straightforward such as requesting all database informa-
tion, or may be more sophisticated. For example, a user
may request only a subset of available information, e.g.
all PG rated movies. The basis of information delivery in
the AIS model is the one-to-many delivery of content us-
ing multicast. This mechanism is not only applicable for

the system's primary service but can also be applied for
information dissemination. The challenge is find ways to
aggregate the many user requests without having to con-
stantly transmit information that is not needed and without
having to make users wait while other requests are batched.
Given a large enough user base, this will not be a problem.
A number of multicast-based dissemination strategies are
possible given a set of requests and their responses. Be-
yond answering queries in realtime, a low bandwidth mul-
ticast channel can be created. Users join this group when
browsing a site and it is used to pre-fetch objects likely to
be requested. The fundamental goal is to avoid having to
dedicate system resources to satisfy a realtime user request.

Input Processing. Input processing consists of ac-
cepting and processing requests from the user. In the IMJ,
these requests were to schedule playout of a particular pro-
gram. Allowing the user to provide input to the applica-
tion greatly increases the flexibility of the application it-
self. The goal of processing the request is to alter or add to
the dynamic content distributed by the application. In most
cases, the exact type of user requests and the processing
required is application specific. ldeally, the actions of one
user should positively affect other users. In the case of the
IMJ, all users may watch the program scheduled by a single
user. In another example, a distance learning application,
the user request might be a real question, something that
all students participating in the lecture would like to hear
answered. These types of scenarios are surprisingly com-
mon in web applications that attempt to draw together a
community of users.

Dynamic Content Distribution. The AIS model
is deemed “active” because user requests create dynamic
changes in the application. In the IMJ, this was the dynamic
schedule of programs. AIS-style applications are depen-
dent upon user requests. When the state of the application
changes, the update must be propagated to all users. Unlike
most traditional web-services, which expect users to check
for new updates by re-loading, AIS uses a push-based tech-
nique. The traditional pull-based approach is limiting in a
number of ways. First, realtime applications suffer arbi-
trary delays based on how willing the user is to frequently
check for updates. And second, additional load is placed
on the system because users are constantly checking for
updates. A large enough user population makes this kind
of system wholly unscalable. In the AIS model, updates
are sent to interested users of the system as events. This
ensures that (1) updates are delivered efficiently without
wasting network bandwidth and (2) users receive updates
as soon as possible. Again, using multicast to deliver these
events is an effective technique for achieving scalability.

Service Activity. The service provided by an AIS ap-
plication may include anything from multimedia content
distribution (as in the case of the IMJ) to the sale of an item
in a realtime auction. This piece of the framework is inten-
tionally left open such that we can support a variety of ap-
plications. However, as with the IMJ, the underlying goal
is still scalability. Therefore, we would like to service as

many users as possible by using a minimal allocation of re-
sources. Again, in many applications, the use of multicast
is appropriate to service all users with a single set of re-
sources, e.g., one video stream. For some applications, like
a chat room, the functionality can effectively be achieved
using a completely distributed system. The real function of
the AIS system is simply to coordinate users and build a
community with something in a common interest.

3.2 AlSbased Web Services

To illustrate the flexibility of the AIS model, Table 1 gives
a brief overview of some of the potential applications that
may be implemented using the AlS.

One of the keys to the AIS model is the use of push-
based communication. It makes the AIS particularly useful
for the web environment where a pull-based model can be
limiting, especially for realtime applications. For example,
a service such as an eBay-style auction cannot take place
in realtime. To see bid updates, users must visit the eBay
web site and actively request a bid update. This limitation
exists with most web-based services. Users who poll too
frequently place unnecessary demands on the servers while
users who do not poll frequently enough may miss updates.
However, the use of a push-based model would eliminate
many of these problems.

As the web evolves, a scalable, push-based model for
web services will become increasingly necessary. The AIS
model solves many of the problems of flexibility and scale
faced by many existing web applications. In addition, as
the services offered on the web become more diverse, we
can use our model to develop those services bottom up. Our
goal is to develop a basic framework that an application
programmer can use to develop an AlS-style application.

4 Case Study: AlSfor Real-time Auctions

We now attempt to evaluate the merits and drawbacks of
the AIS model by describing a design for a realtime auction
using concepts in the model. We first look at the design of
the application and then evaluate how well the functionality
decomposes into AlS functions.

4.1 Designing an Online Auction

Most online auctions follow the open outcry or English
model. In this type of auction, participants submit bids for
a given item. The other bidders see the bids submitted and
may choose to submit a higher bid for the given item. In
online auctions, there is no realtime delivery of new bids.
Therefore, current systems must span days or even weeks.

Wellman and Wurman indicate that there have been
no successful attempts to conduct realtime open outcry
auctions online[5]. There are a number of challenges as-
sociated with developing a system that would provide the
appropriate facilities for a realtime auction. First, it is im-
perative that the system be push-based. Users must be noti-
fied of a bid as soon as it occurs. Waiting for a user to visit a
web page to check bids may result in users missing updates

Schedule Distribute
Items Item

Catalogue

Start
Auction

MulticastCapable
Network

Request Request
o XCatangue Cataloguex Auction

Items Items
& &'
oAl o Al
g ’)’b d ,;:

Shoppers

Figure 3. The first AIS distributes the catalogue of items
and manages the schedule.

Saleof
Item

Bidders

Figure 4. The second AlS conducts the auction.

and thus missing a bidding opportunity. Moreover, scal-
ing an auction that uses this kind of system will be nearly
impossible, especially if many items are being sold simul-
taneously.

Figures 3 and 4 illustrate our approach to develop-
ing an online auction. The implementation we describe
requires two instantiations of the AIS. The first instantia-
tion distributes a catalogue of items and creates the order
for items to be auctioned. When an auction is scheduled to
begin, the first instantiation of the architecture triggers the
start of the second. The second instantiation conducts the
auction by processing bids and distributing them to all in-
terested auction participants. The following section evalu-
ates the benefit of using the AIS for an auction application.

4.2 Evaluation of AIS

The novelty of the AIS model is that it provides an inher-
ent scalability mechanism for web-based applications. It
is also flexible enough to support a variety of applications.
We now look at how well AIS supports the auction applica-
tion, scalability of static content distribution, and the bene-
fit of static allocation of resources.

By designing an auction using the AIS model, we

| Application | Static Content | Input Processing | Dynamic Content | ServiceActivity |
Chat World Catalogue of chat rooms Post a message Messages posted by users | n/a
Digital L ecture notes, web tours, Lecture replay requests, Student questions, class Creating additional

Classroom and archived content

real-time questions, requests handouts, real-time

streams of classroom

for supporting materials test questions. streams of content
News-on-Demand News categories Subscription to a service Schedule of stories Cotent delivery
Stock Ticker List of stocks and Subscription to items Order and frequency Contet delivery
related news of interest of updates
Realtime Auction Catalogue Start of auction Auction schedule Running an auction

Table 1. Examples of AlS-style applications.

have discovered which parts of the model support the ap-
plication. First, the push-based nature of the AIS model is
key to implementing a realtime auction. Without a push-
based information dissemination model, the realtime con-
straint cannot be met and an auction application ends up
more in the vein of eBay style auctions. Second, the modu-
lar design of the model provides a level of flexibility. If the
application were to change to include a vote-based auction
schedule scheme, the design of the auction would require
only minimal changes.

Beyond flexibility, another advantage of the AIS
model is scalable static content delivery. Web sites such
as eBay generally employ one-to-one delivery of catalogue
information. Each user must generate a separate request
for a desired item and the item itself is sent once for every
user. This is not at all scalable. First, the server is loaded by
processing many queries, possibly the same query multiple
times. This is especially expensive if the user has issued a
complex query. In addition, network bandwidth becomes a
bottleneck, especially if the reply is large. As the database
of items grows, queries become more complex and results
grow as well. This could easily be the case with an auction
database. Sellers may post videos or three dimensional rep-
resentations of the items they wish to auction. Therefore,
even if a query returns only a few results, the response ob-
ject may still be very large.

In the auction application, scalability is achieved by
having the result set from every query multicast to the en-
tire user population. This means that a single query has the
potential to satisfy a number of users yielding a substan-
tial gain over the traditional unicast model. When a user
issues a query, the client application first checks the local
cache. If the request can be satisfied by the local cache, the
result is displayed. The tradeoff in this case is the number
of results a user must cache versus the number of results in
which the user is interested. We make the assumption that
there will be a substantial overlap in user interest. There
will be a subset of hot items that many users are interested
in and the remainder of the items will be cold[6]. However,
the best gain occurs when multiple users are interested in
the exact same result. In addition, performance could be
improved by developing a set of cache heuristics. Profiles,
which may be user-defined or discovered over time, indi-
cate which results are most likely to be accessed.

5 Redated Work

Our research draws from two main areas. In this section,
we first look at research efforts that have looked at creating
scalable web services and where they fall short. We fol-
low with a discussion of information dissemination archi-
tectures and evaluate the functionality provided by current
architectures. The AIS seeks to unite these two concepts
by providing a scalable Internet service model that supports
large scale data dissemination.

5.1 Internet Services

Fox and Brewer motivate the need for a scalable solution
to providing Internet services with 24x7 availability to an
ever growing user base[7]. A number of projects have ap-
proached this problem. TACCI[8] and MultiSpace[9] both
look at designing a cluster-based solution to provide incre-
mental scalability. The focus of both projects is largely the
design of a protocol for distributing workload among clus-
ter nodes. In contrast, our effort focuses on developing a
model for application development that will provide inher-
ent scalability at all levels, from the hardware infrastructure
to the network. In fact, both TACC[8] and MultiSpace[9]
can be thought of as complimentary to our effort. We
could employ their cluster-based techniques to implement
our schedulers, event servers, and back-end system.

Smart Clients[10], part of the WebOS project[11],
takes a slightly different approach by looking at how to
use client side Java applets to load balance and provide
fault tolerance. The aim is to distribute the tasks provid-
ing greater flexibility while maintaining the transparency
of a server side solution. Our model advocates a similar
idea and can leverage many of the techniques developed in
this work to join clients to the proxy tree in a distributed,
scalable manner. The benefit of the AIS model is that it
provides a more complete solution, developing a model for
both client and server scalability. WebOS provides a larger
view by developing a file system and security model. How-
ever, the focus is still not on large scale data dissemination.
The goal of the AIS is not only to provide the foundation
for developing web services, but to overcome the limita-
tions of the traditional unicast, pull based web model when
applications become data intensive.

5.2 Data Dissemination

Large scale data distribution has been studied to some ex-
tent. However, many related projects focus largely on a sin-
gle application. For example, SIFT[12] and Tapestry[13]
both focus largely on email filtering and dissemination.
Salamander develops an information dissemination archi-
tecture that looks largely at delivery semantics such as
Quality of Service parameters[14]. The model itself does
not directly address issues of scale in the information de-
livery service. Finally, while these models provide the user
with the ability to subscribe to the service itself, they do
not develop a notion of user request to dynamically alter
the state of the system. Alternatively, the AIS model pro-
vides a scalable, dynamic model that allows users to alter
the state of the system in real-time.

A number of projects have looked at broadcast of
large information bases[15, 16]. The Broadcast Disks
project[17] looks at disseminating data by cyclically broad-
casting objects to clients. A similar project looked at cyclic,
multicast delivery of web pages to clients[18]. Clients lis-
ten to a broadcast channel until they receive all sub-pieces
of the information they are interested in. An extension to
the Broadcast Disks project investigates the balance be-
tween push versus pull data delivery[19] allowing clients
to explicitly request information rather than always wait-
ing until the server schedules the item to be sent. Finally,
DBIS[20] summarizes this work by providing a classifi-
cation of information storage and dissemination systems.
While this work focuses largely on delivery of static web
pages, we focus on static as well as dynamic content. Not
only may the content from external sources change, the
users themselves can modify the content that is delivered.
Our model goes one step further to support data reads and
writes by the users rather than simply reads.

6 Concluding Remarks

This paper describes the development of the Active Infor-
mation System, a model for data intensive, dynamic, web-
based applications. By generalizing the concepts devel-
oped in the Interactive Multimedia Jukebox, we have cre-
ated a model suitable for building a variety of Internet-
based information dissemination applications. To illustrate
the feasibility of using our model, we have looked at its ad-
vantages and disadvantages by describing the design of a
real-time auction. We are encouraged by the model's sup-
port of the auction application. We anticipate the use of
AIS for a variety of web services. The AIS provides a
model for scalable, interactive applications. Implementa-
tion of new applications and services should be straight-
forward given that AlS-based systems are based on under-
lying communication mechanisms and basic functionality
that are simple in the abstract sense.

References

[1]

[2]

[3]

[4]

[5]

[6]
[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

K. Almeroth and M. Ammar, “The interactive multimedia jukebox
(IMJ): A new paradigm for the on-demand delivery of audio/video,”
in Proceeding of the Seventh International World Wide Web Confer-
ence, (Brisbane, AUSTRALIA), Apr. 1998.

T. Little and D. Venkatesh, “Prospects for interactive video-on-
demand,” IEEE Multimedia, pp. 14-23, 1994.

S. Deering and D. Cheriton, “Multicast routing in datagram internet-
works and extended lans,” ACM Transactions on Computer Systems,
vol. 8, pp. 85-111, May 1990.

A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for
an on-demand video server with batching,” in Proceedings of ACM
Multimedia "94, (San Francisco, CA, USA), Oct. 1994.

M. Wellman and P. Wurman, “Real time issues for internet auc-
tions,” in Proceedings of the IEEE Workshop on Real-Time E-
Commerce Systems, (Denver, CO, USA), June 1998.

G. Zipf, Human Behavior and the Principle of Least Effort. Reading,
MA: Addison-Wesley, 1949.

A. Fox and E. Brewer, “Harvest, yield, and scalable tolerant sys-
tems,” in Proceedings of the Seventh Workshop on Hot Topics in
Operating Systems, (Rio Rico, AZ, USA), Mar. 1999.

A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier,
“Cluster-based scalable network services,” Operating Systems Re-
view, vol. 31, pp. 78-91, Dec. 1997.

S. Gribble, M. Welsh, E. Brewer, and D. Culler, “The multispace: an
evolutionary platform for infrastructural services,” in Proceedings
of the USENIX Annual Technical Conference 1999, (Monterey, CA,
USA), June 1999.

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and
D. Culler, “Using smart clients to build scalable services,” in Pro-
ceedings of the USENIX Annual Technical Conference 1997, (Ana-
heim, California, USA), Jan. 1997.

A. Vahdat, T. Anderson, M. Dahlin, and D. Culler, “Webos: Op-
erating system services for wide area applications,” in Proceedings
of the Seventh IEEE Symposium on High Performance Distributed
Computing, (Chicago, Illinois, USA), July 1999.

T. Yan and H. Garcia-Molina, “Sift - a tool for wide-area inforam-
tion dissemination,” in Proccedings of the 1995 USENIX Technical
Conference, (New Orleans, LA, USA), Jan. 1995.

D. Goldberg, D. Nichols, B. Oki, and D. Terry, “Using collaborative
filerting to weave and information tapestry,” Communications of the
ACM, vol. 35, pp. 61-70, Dec. 1992.

G. Malan, F. Jahanian, and S. Subramanian, “Salamander: A push-
based distribution substrate for internet applications,” in Proceed-
ings of USITS 1997, (Monterey, CA, USA), Dec. 1997.

S. Jiang and N. Vaidya, “Scheduling data broadcast to impatient
users,” in Proceedings of the ACM international workshop on Data
engineering for wireless and mobile access, (Seattle, WA, USA),
Aug. 1999.

K. Stathatos, N. Roussopoulos, and J. Baras, “Adaptive data broad-
cast in hybrid networks,” in Proceedings of the 23rd VLDB Confer-
ence, (Athens, Greece), 1997.

S. Acharya, M. Franklin, and S. Zdonik, “Dissemination-based data
delivery using broadcast disks,” IEEE Personal Communications,
vol. 2, Dec. 1995.

K. Almeroth, M. Ammar, and Z. Fei, “Scalable delivery of web
pages using cyclic best-effort (udp) multicast,” in Proceedings of
IEEE INFOCOM 1998, (San Francisco, CA, USA), June 1998.

S. Acharya, M. Franklin, and Z. S., “Balancing push and pull for
data broadcast,” in Proceedings of the ACM SIGMOD Intl. Confer-
ence on Management of Data 1997, (Tucson, AZ, USA), May 1997.

D. Aksoy, M. Altinel, R. Bose, U. Centemel, M. Franklin, J. Wang,
and S. Zdonik, “Research in data broadcast and dissemination,” in
Proceedings of 1st International Conference on Advanced Multime-
dia Content Processing, (Osaka, Japan), Nov. 1998.

