
Evaluating Performance Tradeoffs in a One-to-Many Peer Content
Distribution Architecture

SAMI ROLLINS

Department of Computer Science
Mount Holyoke College

USA
srollins@cs.ucsb.edu

KEVIN C. ALMEROTH
Department of Computer Science

University of California at Santa Barbara
USA

almeroth@cs.ucsb.edu

Abstract

Peer-to-peer (P2P) content exchange has recently
gained attention from both the research and industrial
communities. The dynamic nature of peer networks
and the resource constraints of peer hosts have
introduced a number of unique technical challenges
that must be addressed to make large-scale P2P
content exchange applications more efficient. In this
work, we expand our previous work on Pixie, an
architecture that integrates one-to-many distribution
of content and peer networks. Pixie uses a
jukebox-style scheduling mechanism to provide a
valuable data location service. Users can browse a
listing of all content scheduled to be distributed
across the network thus reducing search overhead.
Moreover, Pixie's use of one-to-many content
distribution provides additional scalability. Our
results indicate that, using Pixie, we can significantly
reduce the resources required to locate and distribute
content in peer networks. The properties Pixie
embodies will become increasingly important as peer
content exchange is extended to support more
advanced, and possibly commercial applications.

Keywords: peer-to-peer, multicast, data location

1 Introduction
Peer-to-peer (P2P) content exchange has recently
gained attention from both the research and industrial
communities. Systems like Napster and Gnutella
launched P2P into the spot light while systems like
Chord [1] and CAN [2] have gone a step further in
terms of supporting reliable and efficient content
exchange. The range of applications that fall into the
P2P space has exploded. From distributed
computation to distributed file storage, any
application that supports cooperation between end
hosts is often considered P2P. However, as P2P
becomes recognized as more than just the latest
buzzword, there is a call to identify and solve the
technical challenges that are faced in P2P

environments. The dynamic nature of peer networks
and the resource constraints of peer hosts have
introduced a number of unique technical problems.
Also, while most early deployments work, they are
really only simple prototypes and leave many
important problems unsolved.
 In this work, we extend our previous work on
Pixie [3] an architecture that integrates one-to-many
distribution of content and peer networks. In Pixie,
peers join the network and retrieve a schedule of
content to be distributed. Peers can browse the
schedule and choose to take advantage of an
already-scheduled distribution. Alternatively, a peer
can choose to request that a new distribution be
scheduled. At the time a distribution is scheduled to
begin, the serving peer distributes content to all
interested peers using any of the available
one-to-many communication technologies. While
native multicast is the most efficient strategy, the
techniques we describe in this work are independent
of the chosen delivery mechanism.
 Pixie differs from traditional P2P systems in that it
provides a new data location service. Its schedule of
content currently being delivered, or about to be
delivered, serves as a browsable index. In addition,
this schedule can reduce searching overhead, in many
cases by more than half. Also, by aggregating client
requests and using one-to-many batched content
distribution, we can actually reduce client wait time
by reducing queuing delays as well as reduce the use
of resources such as disk space, distribution time, and
bandwidth on the serving peer. In the future, we plan
to investigate additional savings which may be
gained by using a many-to-many distribution scheme
in an unreliable network. However, the focus of this
work is to validate the service model Pixie supports
by investigating the performance tradeoffs involved
with using Pixie as a data location service.
 This paper expands our previous work in two
ways. First, we further evaluate the tradeoff between
Pixie search savings and the overhead incurred by the
Pixie scheme. Our results indicate that Pixie reduces
search overhead by over half while incurring a
manageable overhead with respect to schedule

maintenance. In fact, even with the schedule
maintenance overhead, Pixie outperforms a
Gnutella-style flooding search scheme. Additionally,
we address reliability and fault handling in Pixie. We
discuss Pixie's use of existing reliable, one-to-many
data distribution protocols as well as the Pixie
protocol for handling serving peer faults.
 This paper is organized as follows. In Section 2
we define peer-to-peer and explore current solutions
to the challenges facing P2P applications. Section 3
presents our architecture. In Section 4, we quantify
the benefit of using Pixie as a data location service
and evaluate the tradeoff between the search savings
and schedule maintenance overhead of Pixie. In
Section 5, we evaluate the benefits of using
one-to-many content distribution in Pixie. Section 6
expands on our fault handling scheme. We conclude
in Section 7.

2 Related Work
In this section, we first look at the current impact of
P2P content exchange and then address some of the
limitations facing P2P networks.

2.1 P2P Content Exchange
P2P encompasses a huge area, from distributed
computing [4] to collaborative applications [5].
Applications such as classroom educational tools that
enable users to communicate are often considered
P2P regardless of their implementation.
Alternatively, tools such as application-layer
multicast [6] that are implemented using a P2P
model, yet support a variety of applications, also fall
within the P2P space. In this work, we focus on P2P
content exchange applications. This includes the
tools, protocols, and applications that support
exchange of content between end users.
 Napster's pioneering efforts spawned a number of
academic and industrial projects aimed at developing
efficient, P2P content exchange applications. The
primary use of these applications has been the
exchange of MP3 music files. But, factors such as
increased disk space and higher bandwidth are
enabling exchange of other forms of media such as
digital video. As more peers increasingly send more
and larger files, a number of challenges become
apparent.

2.2 Challenges of P2P Content Exchange
As the range of P2P applications increases, P2P
content exchange faces a number of challenges. We
classify the set of challenges into three areas: peer

discovery and group management, data location, and
reliable and efficient content exchange.

2.2.1 Peer Discovery and Group Management
The dynamic, ad hoc nature of peer groups makes it
difficult to implement peer discovery and group
management algorithms. Centralized solutions
largely defeat the purpose of a peer network and can
be too restrictive if a centralized infrastructure is not
available. On the other hand, distributed solutions
generally require a great deal of overhead in terms of
state kept about other peers and messaging required
to maintain that state.
 Discovery and management of peer groups can be
implemented using a centralized solution, a
distributed solution, or a hybrid solution. Centralized
solutions such as those used in Napster, Magi, and
Groove are most efficient because peers need not
keep state about other peers. Moreover, peers can
locate each other with a single request to the
centralized directory. The problem with this
approach is that it requires a centralized
infrastructure. Such an infrastructure may not always
be available or may introduce a central point of
failure which minimizes the benefit of a P2P system.
 Distributed solutions such as Gnutella, FreeNet
[7], Chord [1], CAN [2], Tapestry [8], and Pastry [9]
generally rely on using a well-known peer to discover
the rest of the peer group. However, the group
management protocols employed by these solutions
are distributed. In Gnutella and FreeNet, a peer keeps
track of a constant number of other peers. This is
efficient in terms of the state kept at each peer. The
problem with the approach is that searching the peer
network may be slow.
 Chord, CAN, Tapestry, and Pastry represent the
second-generation of P2P protocols also known as
Distributed Hash Tables (DHTs). In each of these
protocols, the network is organized such that peers
keep track of a logarithmic number of other peers
(with respect to the number of peers in the network).
When searching, the protocols can guarantee, or
guarantee with high probability, that the desired item
can be located in a logarithmic number of peer hops.
 Peer discovery and group management is the
primary focus of P2P content exchange research. We
believe that the research in this area is promising.
Therefore, in this work, we focus our attention on the
following two aspects of content exchange.

2.2.2 Data Location
The distributed nature of peer networks makes data
location a difficult problem. Having a centralized
index or catalogue of available content again defeats
the purpose of a P2P solution and may not be possible

if no centralized infrastructure exists. At the other
extreme, a fully replicated index wastes resources at
each peer and would be difficult, if not impossible, to
maintain in a dynamic environment.
 Most of the work on supporting data location in
peer networks has focused on on-demand searches
for information. Systems like Gnutella and Napster,
as well as CFS [10], OceanStore [11], and PAST
[12], systems built on top of Chord, Tapestry, and
Pastry respectively, allow the user to search for a
particular document. The user must know the name
of the document prior to requesting it and searching is
then performed on-demand. While many of these
systems claim to support file system-like
functionality, the infrastructures do not support file
system-like content location. Providing that kind of
support would require the application to keep track of
metadata about each user's files. Even so, this facility
would not support exchange of content between
users.
 Users may not always have a target item they wish
to download. Our solution provides users with
catalogue of content that they can browse. The
benefits of organizing content into a browsable
catalogue include both a more pleasurable user
experience as well as a reduction of bandwidth and
processing power required when searching for
information.

2.2.3 Reliable and Efficient Exchange
End-user peers are inherently resource constrained.
Especially when compared to centrally administered
servers, end-user devices (e.g., desktops, laptops, or
PDAs) are restricted with respect to bandwidth, disk
space, processing power, as well as up-time since
peers cannot be relied upon to remain connected for
any specific length of time. This limitation makes
reliable content exchange more challenging in the
P2P environment. New and innovative schemes
must be employed to provide fast downloads and
avoid overloading the resources of peers that store
hot items.
 In the P2P space, techniques for making content
exchange more reliable and efficient have relied on
replicating data within the network. Most deployed
systems such as Napster and Gnutella rely on the
assumption that data are inherently replicated
throughout the network. First, the user selects the
best peer from which to download content. If the
download request fails, generally because the other
peer is not reachable, the user must try a different
peer.
 This model begins to break down when hot data is
stored on only a small number of peers. Especially if
the peers are resource-constrained, they may not be

able to support multiple simultaneous requests from
the remainder of the network. This problem is further
exaggerated by the fact that peer networks are often
composed primarily of freeriders [13,14], peers that
are only part of the network long enough to retrieve
content from other peers.
 As peer networks grow, and as multimedia
content becomes larger and consumes more
resources such as disk space and bandwidth, a more
efficient scheme for exchanging content is required.
In this work, we focus on the latter two challenges.
Pixie addresses the problem of data location by
providing a browsable catalogue of popular content
available across the network. Moreover, the
catalogue caches the location of content making data
location more resource-efficient. Additionally, we
address the challenge of efficient exchange of content
by batching requests for content and servicing
hundreds or thousands of requests simultaneously.
From the client perspective, this greatly reduces the
wait time experienced after issuing a request. From
the server perspective, we greatly reduce the
resources required at the serving peer including disk
space, distribution time, and bandwidth.

3 Pixie System Design
To overcome many of the challenges of traditional
P2P content exchange systems, we explore using
one-to-many content distribution in peer networks.
In this section, we discuss the motivation of our
work, provide an overview of Pixie, and discuss the
architecture in more detail.

3.1 The AIS
Our architecture is inspired by the Active
Information System (AIS) [15], a near-on-demand
architecture to support scalable content delivery.
The AIS batches client requests for content and
produces a schedule of the content to be
disseminated. When a client tunes in to the system,
the client may choose to receive content already
scheduled, or may choose to schedule a new
distribution. The tradeoff in this case is the time the
user must wait to receive content. Dissemination is
done using multicast thus relieving much of the
burden on the network.
 The AIS batching paradigm is well-suited for P2P
content exchange. By batching download requests
and distributing content to multiple peers in parallel,
we can ease much of the burden placed on the serving
peer as well as the network. Additionally, the
schedule of content to be distributed acts as a hot list

catalogue. Users can consult the schedule to browse
content available in the network.
 Unfortunately, the current design of the AIS is
targeted toward centralized, video-on-demand (VoD)
style applications [16] and is not well-suited to
deployment in a P2P network. We have borrowed
the AIS paradigm to create an extended architecture
to support efficient, scalable, P2P content exchange.
Other solutions such as Virtual Batching [17]
propose distributed distribution schemes to support
VoD applications. However, Pixie differs from the
Virtual Batching approach in two main ways. First,
we address the challenge of data location by

providing a schedule of content to the user.
Additionally, our goal is to reduce resource usage
across the entire network, not just at the server.
Another similar approach is Jungle Monkey [18].
The main contribution of Jungle Monkey is an
underlying end-host multicast protocol. Pixie could
be built on top of such a protocol to provide reliable
distribution of content and control messages.

3.2 Pixie Overview

Figure 1: Overlapping requests are aggregated at the serving peer.

Pixie is an architecture which supports one-to-many
distribution of content in peer networks. The first
goal of Pixie is to aggregate peer requests to
download content and use intelligent, one-to-many
content delivery (e.g., multicast) to enable a large
number of peers to take advantage of the same
distribution (see Figure 1). The second goal is to
publish a schedule of content to be distributed to
allow users to browse through the most popular
subset of content available across the network. Pixie
can be implemented on top of virtually any peer
group management protocol. When a peer joins the
network, it requests the schedule. The schedule
contains information about content that will be
distributed (e.g., Gone with the Wind), how the peer
is to receive the content (i.e., the IP address of the
multicast group), and when the distribution is

scheduled to begin (e.g., 8pm GST). If a user is not
interested in content already scheduled for
distribution, the user may choose to search for and
schedule new content. When a new distribution is
scheduled, an updateSchedule message is propagated
to all peers indicating the name of the content that
will be distributed, how an interested peer can receive
the content, and the scheduled distribution time. At
distribution time, interested peers tune in to the
distribution.
 Using this model, peers are able to more rapidly
and efficiently locate data of interest. The schedule
provides a new service, acting as a browsable hot list
of available content within the network. Assuming
that many users are interested in the same content, it
is likely that a user will find the content he or she is

interested in by looking at the schedule, thus easing
the burden on the network.
 By distributing content using one-to-many
distribution, we provide additional scalability
properties as well. Efficiency gains come from
reducing the load on peers by aggregating requests
and servicing multiple peers simultaneously. At the
scheduled time, the sending peer distributes the

information using one-to-many distribution. All
interested peers simply tune in and receive the
content.

3.3 Pixie Architecture

Figure 2: Architecture of a Pixie peer.

Figure 2 shows the general architecture of a Pixie
peer. The Pixie components are implemented on top
of a group management layer. We place no
restrictions on the group management protocol. We
envision anything from Napster-style centralized
management to Gnutella-style distributed
management to Chord-style distributed management.
We discuss each component in more detail:

ScheduleManager. The ScheduleManager controls
access to the schedule. The schedule contains
information about which data are scheduled to be
distributed, when distribution will begin, and where
the data will be distributed. It is the equivalent of a
TV guide that indicates which programs will be
showing, at what time, and on which channel. Each
peer can retrieve a copy of the schedule when joining
the network or can simply join the network and
receive any future updates. Where the original copy
is found depends on the group management
algorithm employed. In a Napster-style network, a
getSchedule request will be routed to the centralized
server. In a Gnutella-style network, a getSchedule

request will be routed to a neighboring peer. We
consider the schedule to be best effort in that we do
not guarantee the peer will receive the latest version.
However, if a peer receives a stale version and
attempts to search for or schedule an
already-scheduled piece of content, the peer serving
the content will simply respond with an update
indicating where and when the content is already
scheduled. The ScheduleManager also receives and
applies any updates to the schedule. Schedule
updates contain relevant information about newly
scheduled distributions (i.e., the content to be
distributed, when the distribution will begin, and
where the data will be distributed).

Scheduler. The Scheduler handles the scheduling of
content distribution for a given peer. When the
Scheduler receives a request for new content, it
determines when the peer will have the resources
available to fulfill the request. For example, if a peer
can only support two simultaneous distributions and
it is already distributing two streams, the new
distribution must wait at least until one of the

distributions has finished. The Scheduler may also
apply more advanced scheduling algorithms such as
delaying distribution in anticipation that more peers
will be interested in the same content in the near
future. Once the distribution has been scheduled, an
updateSchedule message is generated and sent to all
peers in the network. The most straightforward
method of distributing the updateSchedule message
is via multicast (native or application-layer), though a
broadcast or gossiping scheme could also be used. In
the multicast case, an additional optimization is to
use the group abstraction to enable a user to filter out
updates for uninteresting content. For example, if a
user is not interested in action movies, that user may
not subscribe to the multicast group which distributes
updates for scheduled deliveries of action movies.
An analysis of this optimization is the subject of
future work.
 In a decentralized system, the Scheduler will exist
on each peer and each peer will be responsible for
scheduling distribution of its own content. However,
a centralized implementation could also be
employed. In a Napster-style system, a centralized
authority would have information about each peer
and could make scheduling decisions based upon that
global information. This may be more efficient in
terms of resource usage, however would require the
presence of a centralized infrastructure.

ContentManager. The ContentManager controls
access to the data stored on each peer. If a peer is not
interested in scheduled content, it can search the
network for other content. Search requests are routed
through the network in a manner consistent with the
underlying group management protocol. For
example, using a Napster protocol, search requests
would be routed to a centralized server while if using
a Gnutella protocol, requests would be routed to
neighboring peers. When a peer receives a search
request, the ContentManager consults the content
base and responds with information about content
matching the search query. In a Gnutella-style
network, the search request would then be forwarded
to neighboring peers.
 The ContentManager is also responsible for
distributing content and receiving and storing content
distributed by other peers. At the scheduled time, the
ContentManager distributes the content, preferably
using multicast. While network-layer multicast is the
most efficient distribution mechanism,
application-layer multicast distribution can be
employed for peers without multicast connectivity.
A number of appropriate application-layer multicast
schemes have recently been developed for the
peer-to-peer environment [6,18]. These schemes

distribute the burden of content delivery among the
participating peers. They offer low overhead for the
participating peers and minimal delay with respect to
the time to propagate a message from the root to the
leaves of the multicast tree.
 To ensure reliability, Pixie can use a basic reliable
multicast distribution scheme for delivery of both
content and control messages. However, any
straightforward reliable protocol run over either
native or application-layer multicast requires
receivers to join the distribution from the beginning.
Moreover, if a serving peer fails, a new serving peer
must start the distribution again from the beginning.
To overcome this limitation, we propose and evaluate
the use of a digital fountain-style scheme [20]. Using
a digital fountain scheme, the ContentManager
distributes files that have been encoded using
Tornado codes. The serving peer continuously
distributes blocks of the encoded file until the client
peer has received a sufficient number of blocks to
reconstruct the file. Since blocks may be received in
any order, a client can join the distribution at any
time and take advantage of the distribution in
progress. Similarly, if N blocks are needed to
reconstruct a file and a serving peer fails after a
corresponding receiving peer has received N-X
blocks, the receiving peer can join a new distribution
and will only need to receive the remaining X blocks.
 Using this scheme, a peer can potentially remain
continuously occupied, distributing the same file. In
the most extreme case, a serving peer distributing a
file that requires N blocks to decode will receive a
new request for the file after almost all blocks have
been sent. In some cases, this behavior may be
desirable. However, a peer that stores multiple
pieces of popular content may need to perform some
form of internal load balancing to ensure that it can
service requests for multiple pieces of content. We
leave the details of this scheme as future work.

UserEventManager. The UserEventManager
processes events from the user and interacts with the
user interface. It initiates searches for content
specified by the user, requests new content be
scheduled, and receives and displays search
responses. This component is quite flexible and can
be implemented to suit the preferred user interface.

4 Evaluation of Pixie Data Location
In this section, we evaluate the benefit of using Pixie
as a data location service in a peer network. First, we
look at the metrics we evaluate and the setup of our
experiments. Then, we look at the results of our

experiments that evaluate the tradeoff between the
search savings gained by using Pixie, and the
additional overhead of Pixie updateSchedule
messages. Our conclusion is that, especially in
flooding networks like Gnutella, using Pixie requires
fewer search messages while incurring minimal
overhead.

4.1 Metrics
To evaluate the benefit of Pixie, we are interested in
three primary metrics:

1. Found – Found describes how often the user is

interested in a particular item and is able to find
that item in the schedule. This metric provides us
with an idea of how useful the schedule
abstraction is from the user perspective.

2. Number of Search Messages Processed –
Number of Search Messages Processed provides
a quantification of the search overhead incurred
by Pixie versus the overhead incurred using a
straightforward search scheme.

3. updateSchedule Message Overhead –
updateSchedule Message Overhead shows the
overhead of distributing updateSchedule
messages throughout the network. This metric
provides an idea of the cost associated with using
the Pixie scheme.

4.2 Setup
To evaluate these metrics, we have simulated the
schedule portion of our architecture. When a request
is made, it is processed according to the following
algorithm:

if the requested item is scheduled
 record as found
 if the distribution has started
 schedule at end time of current distribution
 send updateSchedule message to entire network
else
 send search message
 schedule at current time + 1 minute delay

In this experiment, we assume distribution is done
through a basic, reliable one-to-many distribution
service such that users can only join the distribution
from the beginning. An item remains in the schedule
from the time it is scheduled until it has been
distributed.
 This model does not entirely capture two cases.
First, we do not capture the case when scheduling
incurs an additional delay because a peer's resources

are otherwise occupied. However, we claim that the
model we use is, in fact, the most restrictive for the
metrics we consider. Lower delay means that items
remain in the schedule for a shorter period of time
and are less likely to be found. Incurring an
additional delay because a peer is distributing other
content or is otherwise busy would only improve our
results. Additionally, we do not consider a
many-to-many scheduling scheme. However, if such
a scheme were to use intelligent updateSchedule
propagation techniques, it would not affect any of the
metrics we consider here.

Min
Time (sec)

Max
Time (sec)

Description

1 500 Fast Connection/
High Variance

10 50 Fast Connection/
Low Variance

3800 4300 Mid Connection
10800 21600 Slow Connection/

High Variance
15120 16920 Slow Connection/

Low Variance
120 180 Typical of Current

Usage

Table 1: Object distribution times.

To model user behavior, we generate a trace of
requests using a Zipf distribution [21]. Recent
studies have shown this to be typical for current P2P
systems 1 . Unless otherwise noted, we assume a
network size of 15,000 peers, use a catalogue of
400,000 items, and run the experiment for a
simulated period of 8 hours. We have also run
simulations over a simulated period of 24 hours and
observed similar results. To analyze the behavior of
the system, we vary three main parameters:

1. Load – We look at the system behavior under

different load conditions by varying the number
of requests per second made across the network
from 20-90. Values are taken from recent studies
of the Gnutella network [14, 22] which indicate
that a single peer services or routes roughly 20
requests per second.

2. Peer Characteristics – We look at the behavior
of the system based on different peer
characteristics by varying the time it takes to

1
http://www-2.cs.cmu.edu/~kunwadee/r
esearch/p2p/gnutella.html

distribute a single object (see Table 1). Small
values for the distribution time can be the result
of a fast connection or a small object. A large
disparity between the min and max times is the
result of highly varying peer characteristics.
Each distribution time is chosen randomly
between the minimum and maximum times.

3. Network Size – We look at the system behavior
as the network size (e.g., number of participating

peers) varies. We look at a small network of 500
nodes, a moderately sized network of 15,000
nodes, and a large network of 50,000 nodes.

4.3 Results

Figure 3: Number of items found over time for varied requests per second.

Figure 4: Number of items found over time for varied distribution times.

Figure 3 and Figure 4 illustrate how the number of
items found changes over time for varied load and
varied peer characteristics. In Figure 3, we fix the
minimum and maximum distribution times at 1 and
500 seconds respectively. We observe that the

greater the number of requests per second seen by the
network, the greater the number found items at each 1
minute interval. This is not surprising since a greater
number of requests will mean that the schedule of
distributions is larger and there is a greater

probability of overlap.
 We also observe that, in all cases including the
case when the load spikes from 30 to 80 requests per
second from minute 120 to minute 180, the number
of found items stabilizes quickly and remains stable
throughout the experiment. This property allows us
to conclude that under varying load conditions, the
system will remain stable.
 Another interesting observation is that the
percentage of requests that are found remains
relatively stable throughout the experiment. The
percentage of found items ranges from 54.0% overall
in the 20 requests per second case to 65.1% overall in
the 90 requests per second case. Thus, we can
extrapolate that even under varying load conditions,
nearly the same percentage of requests will be found
overall.
 In Figure 4 we fix the load at 40 requests per
second and vary the item distribution time. The item
distribution time is the amount of time it takes to
distribute a particular item. We observe that the
greater the distribution time, the greater the number
of found items at each one minute time interval. The
reason for this behavior is that items with longer
distribution times will remain in the schedule longer.

Hence, the schedule itself will be larger and the
probability of finding an item in the schedule will be
higher. Additionally, when items have longer
distribution times, the system takes longer to
stabilize. This is because no items are removed from
the schedule until the initially scheduled distributions
finish.
 We also observe that faster distribution times
result in fewer found items overall. This is simply
because when requests are processed faster, there is
less opportunity to find a scheduled or executing
distribution. Our results indicate that when
downloads occur very quickly (10-50 seconds), the
percentage of items found in the schedule is 48.1%.
This is still a substantial percentage and would still
render our system useful.
 Our final observation is that slower connections
with low variance tend to be quite cyclic. This is
largely because the low variance means that all
requests initially scheduled are likely to finish at
nearly the same time and new requests will be
scheduled at that time. This behavior is less likely to
occur in a system with varying load, or one in which
the load gradually builds up to a stable point.

Figure 5: Number of search messages processed in a centralized scheme.

Figure 6: Number of search messages processed in a flooding scheme.

Figure 7: Number of search messages processed in a document routing scheme.

To quantify the search savings in Pixie, Figure 5,
Figure 6, and Figure 7 illustrate the number of search
messages that are processed in Pixie versus three
standard search schemes. In each case, we assume
that Pixie runs over the corresponding group
management scheme we compare against. For
example, in Figure 5, we assume that Pixie runs on top
of a centralized group management protocol. In this
case, we assume the existence of a Napster-like
centralized server where all metadata is stored.
When a Pixie peer becomes interested in a piece of
content, it sends a search message to the centralized
server which responds with a list of peers which have
the desired content. To be fair, we compare this
Centralized Pixie Search scheme to a Napster-like
centralized search scheme which would incur the
same additional overhead such as the initial upload of

metadata. We also look at Flooding Pixie Search
and Document Routing Pixie Search in comparison
to a Gnutella-like scheme and a DHT-like scheme
respectively. In the flooding case, we assume that
Pixie runs on top of a Gnutella-style network. We
assume that when a Pixie peer becomes interested in
a particular piece of content, it sends a message to all
of the peers it knows about. All of those peers send
the message to all peers they know about, and so on.
Our assumption is that the search message is
processed by all peers in the network. In the
document routing case, we assume that Pixie runs on
top of a DHT such as CAN. In this case, we assume
that the respective routing algorithm is used, and that
log N peers process each search message (where N is
the total number of peers in the network). We assume
a network size of 15,000 nodes which is consistent

with recent studies of the Gnutella network [14].
 Our first observation is that Pixie reduces the total
number of search messages processed by over half.
In a centralized network, the savings is about 1,400
messages per minute. However, in a document
routing network the savings is roughly 14,000
messages per minute, and in a flooding scheme, the
savings is over 21,000,000 messages per minute. The
disparity can be explained by the fact that each search
scheme requires a different number of peers process
each search message. Given our network size of
15,000 nodes, using Pixie instead of a flooding
scheme saves approximately 24 messages per second
per peer.
 We also observe that the shapes of the curves for
the three classes of search scheme are nearly
identical. This is the result of using the same trace
data for each experiment. However, as previously

observed, the scale of the results varies for each
scheme. A flooding scheme generates significantly
more traffic overall than a centralized scheme.
Therefore, Pixie is more beneficial in the flooding
case.
 Our final observation is that all schemes are very
stable. The stability of the centralized, flooding, and
document routing schemes can be explained by the
fact that we assume that the network is stable, and we
assume that the same number of messages are
processed for each search. In reality, factors such as
network instability, user behavior, and network
configuration could affect the stability of these
schemes. However, we also observe that Pixie is
nearly as stable as the schemes we compare against.
Therefore, in a stable network, Pixie is likely to be
well behaved and consistently perform well.

Figure 8: Number of updateSchedule messages processed at each node per minute.

While Pixie dramatically reduces the number of
search messages processed in a P2P network, Pixie
does incur the cost of additional updateSchedule
messages that are flooded throughout the network for
every scheduled distribution. In Figure 8, we examine
the number of updateSchedule messages processed at
each node in the network. We vary the load from 20
requests per second to 80 requests per second and
look at the average number of updateSchedule
messages per second processed at each node for
every one minute time interval.
 Our first observation is that the more heavily
loaded the network, the more overhead incurred.
This follows from the fact that a more heavily loaded
network will have more scheduled distributions and

hence more updates. However, we notice that even in
a heavily loaded network supporting 80 requests per
second, fewer than half the requests result in an
updateSchedule message. Moreover, in a moderately
loaded network of 40 requests per second, each node
sees fewer than 20 updates per second. We believe
this to be a reasonable tradeoff for the search savings
and enhanced user experience gained by using the
Pixie scheduling scheme.
 We further observe that the number of
updateSchedule messages sent remains stable
throughout the 480 minute run of the experiment.
Therefore, we can conclude that in a stable network,
Pixie will remain stable as well.

Figure 9: Search and search plus overhead in a small network.

Figure 10: Search and search plus overhead in a large network.

Our final set of experiments further examines the
tradeoff between the search savings gained by using
Pixie and the overhead required by the
updateSchedule messages. We present the number of
search messages processed in a straightforward
flooding search (FS) and the total number of search
messages plus the number of updateSchedule
messages (overhead) processed in a Pixie flooding
search scheme (P+O). We vary the load from 20
requests per second to 90 requests per second and
look at the total number of messages processed
during each one minute time interval. In Figure 9 we
assume a small network of 5,000 nodes and in Figure
10 we assume a large network of 50,000 nodes. We
omit the results of the same experiment run on a
medium-sized network of 15,000 nodes for clarity of

presentation. However, the results were as expected.
 Again, we use the same trace data for each
experiment and thus observe the same phenomenon
we observed in Figures 5, 6, and 7. Our curves are
consistent, however, the larger the network, the more
absolute savings. We see about a ten fold increase in
savings from roughly 1,200,000 messages per minute
to roughly 12,000,000 messages per minute from the
5,000 node network to the 50,000 node network.
 We further observe that the more heavily loaded
the network, the greater the disparity between Pixie
and the flooding search scheme. Therefore, the more
heavily loaded the network, the more benefit we gain
by using Pixie. Even in a lightly loaded network,
Pixie requires roughly an equivalent number of total
messages to the flooding scheme. Further, we

contend that updateSchedule messages require less
processing and therefore, even in a lightly loaded
network, we benefit from using Pixie.

4.4 Discussion
Pixie introduces a new model for P2P content
exchange. From a user's perspective, Pixie means
that P2P is no longer simply pull-based, on-demand
information exchange. Information about the most
popular content is actually pushed to the end user.
Our results show that, in a moderately loaded system,
over half of the time the user can find an item of
interest by simply browsing the schedule of content.
This not only improves the user experience, it greatly
reduces the number of search messages flowing in
the network.
 However, there is a tradeoff between the search
savings in Pixie, and the minimal overhead incurred
by the updateSchedule messages. Fortunately, our
results indicate that the updateSchedule message
overhead is manageable. In fact, Pixie outperforms a
flooding search network like Gnutella even with the
additional updateSchedule overhead. Therefore, we
conclude that Pixie provides both a desirable and
efficient data location service.

5 Evaluation of Pixie Distribution
In this section, we quantify the benefit of aggregating
requests and batching content distribution in P2P
networks. Using Pixie, we can reduce the load on the
serving peer as well as the wait time of the requesting
peers.

5.1 Metrics
We are interested in two primary metrics:

1. Wait Time – In order to evaluate the benefit

aggregation provides to the client, or requesting
peer, we look at wait time. Wait time describes
the amount of time the client must wait from the
time it requests a piece of content until the
distribution begins.

2. Number Serviced per Distribution – To
evaluate the benefit aggregation provides to the
serving peer, we look at the number of clients
satisfied with each distribution. Using this
metric, we can extrapolate on the resource
savings of using an aggregation scheme.

5.2 Setup
To evaluate these metrics, we have simulated a single
peer receiving and servicing requests. Since most

peers act in a similar manner, modeling a single peer
will provide us with adequate information to evaluate
the desired metrics. If the peer receives a request for
content that is already scheduled but has not begun,
that request is aggregated and will be serviced by the
already-scheduled distribution. If the request is for
content that is not scheduled or is already being
distributed, the peer schedules a new distribution of
the requested content. We compare three scheduling
schemes with respect to our target metrics.
 We generate our traces using the parameters
outlined in Section 4. Unless otherwise noted,
experiments are run for 480 minutes, item
distribution time is between 1 and 500 seconds, 40
requests per second are made across the entire
network, and the serving peer stores one piece of
moderately popular content. Of the 40 requests per
second made across the network, only those requests
for the content stored on the serving peer will be
processed. All scheduling is done first come first
served with respect to the requests for content. We
discuss each of the scheduling schemes evaluated in
more detail:

1. FCFS – This is the base case, first come, first

served, no aggregation-no delay scheme.
Distribution is one-to-one as is the case is current
P2P systems and requests are serviced as soon as
they are received.

2. AGG-<DELAY> – This is an aggregation-delay
scheme. Multicast distributions of requested
content are scheduled with delay <DELAY>,
specified in minutes.

3. DF-<DELAY>-<MAXDIST> – This is a digital
fountain-delay-maximum distribution time
scheme. Digital fountain style distributions [20],
are scheduled with delay <DELAY> as in the
previous scheme. In addition, since the digital
fountain scheme can cause starvation if requests
for the same content continue to arrive,
<MAXDIST> is a variable that specifies the
maximum number of times a single distribution
can be extended.

5.3 Results
We present the results of two experiments. In the
first experiment we look at our target metrics in the
base case. In the second experiment we take a
slightly different look at the wait time metric while
varying the load across the network.

Figure 11: Number of requests experiencing each wait time at 40 requests per second.

Figure 11 plots the number of requests that experience
each given wait time throughout the 480 minute
experiment. In the FCFS case, many requests are
made and queued, but not serviced within the 480
minute window. This is a common occurrence and
illustrates the instability of the system using a FCFS
scheme. Unserviced requests will remain in the
queue of waiting requests at the end of the 480
minutes and are not reported here. We have
truncated the FCFS data for presentation, but what
happens in the FCFS case is that most of the serviced
requests are issued in the first few timesteps.
Because they are serviced sequentially, each request
waits from the beginning of the experiment until the
time it is serviced and the time waited increases
linearly for each serviced request. In fact, the final
request serviced waits for 25,487 seconds.
 While the FCFS wait times increase linearly, in all
aggregation schemes compared, the wait time
remains relatively constant. Using aggregation, no
request ever waits for greater than 500 seconds
because, in the worst case, a request will be issued
just as a distribution is starting, hence the request will
have to wait the duration of the distribution. This
worst case would be affected if the serving peer
stored more than one piece of content. In the worst
case, a peer storing N pieces of content would
schedule them sequentially, 1, 2,...,N. If a request for
1 was issued right after the distribution began, the
request would have to wait ∑N

i=1 distribution_timei
seconds until 1 was scheduled again. A peer could
potentially distribute multiple pieces of content

simultaneously, but the time to complete each
distribution is still restricted by the peer's outgoing
bandwidth. Additionally, we suggest that by
enabling users to browse a schedule of content,
requests are likely to be influenced by content
already scheduled.
 Another observation of Figure 11 is that the spikes
at wait times 0 (not shown for clarity of presentation),
61, and 301 indicate that the largest number of
requests wait for the amount of time specified by the
delay of the aggregation scheme. This is because the
system is somewhat lightly loaded and relatively few
requests arrive between the time that a distribution is
scheduled and when it begins. While a longer delay
implies a longer average wait time, the tradeoff is that
a longer delay scheme utilizes fewer resources at the
serving peer.
 Finally, the difference between straightforward
aggregation and a digital fountain-style aggregation
scheme is minimal. This is primarily because we
delay any new distributions by 1 minute and because
we restrict the number of times the distribution can be
extended to one. In fact, since our serving peer in this
experiment stores only one piece of data, in an
unrestricted digital fountain scenario we would
achieve 0 wait time for all requests. If a peer was
stable, likely to remain available, and stored only one
or a few pieces of popular content, using an
unrestricted digital fountain scheme would be the
best choice.

Figure 12: Number of requests serviced with each distribution at 40 requests per second.

Figure 12 illustrates the number of peers serviced for
each distribution scheduled during the 480 minute
run using the same parameters used for the
experiment shown in Figure 11. We omit the results
of the DF 1 1 scheme for presentation since the
results were similar to the AGG 1 scheme. We also
omit the results of FCFS because it always services
one request.
 We notice that the aggregation schemes manage
to service up to 30 requests per distribution. We also
notice that the AGG 5 scheme never services less
than 7 requests per stream while the AGG 1 scheme
often services fewer. Because AGG 5 consistently
services more requests than the lower delay scheme,
fewer distributions are required. This is simply

because more requests are aggregated prior to the
beginning of a given distribution. What this implies
is that there is a tradeoff between the resources used
at the serving peer and the wait time experienced by
the client. By incurring an average wait time penalty
of 33 seconds with the AGG 5 scheme, we gain
roughly a 25% resource savings at the serving peer.
Our final observation is that by using aggregation, we
gain an advantage in terms of disk space required
across the network. For the FCFS scheme to achieve
the same performance of the AGG 5 scheme, content
would have to be replicated up to 30 times throughout
the network.

Figure 13: Wait time for each request serviced with load surge.

In Figure 13 we store an unpopular piece of content on
the serving peer and demonstrate a spike in load from
40 to 90 requests per second. The figure illustrates
the wait time experienced under these conditions.
While wait time with the FCFS scheme continues to
grow, even without the load spike, wait time using
the aggregation scheme remains stable over all
requests. Such behavior is especially important when
a new, popular piece of content is introduced into the
peer network. In the best case FCFS scheme,
distributing a single piece of content throughout the
entire network would be logarithmic with respect to
the number of peers. Using aggregation, the same
distribution occurs in constant time.

5.4 Discussion
The one-to-many nature of Pixie distribution
provides a number of additional scalability
properties. Pixie dramatically reduces the wait time
experienced by client peers while reducing the load
on the serving peer. A peer in a standard, first come,
first served scheme can wait over 50 times longer
between the request for content, and the start of a
distribution than a Pixie peer. Additionally, the
serving peer load can be reduced by up to 30 times by
servicing multiple peers in parallel. Finally, Pixie is
virtually unaffected by an increase in load across the
peer network. It gracefully handles heavy load as
well as load spikes whereas the first come, first
served case becomes very unstable in both situations.
Previous experiments [3] have also shown that Pixie
performs well under varied network load and peer
characteristics as well.

6 Reliability and Fault Handling
The dynamic nature of peer networks makes reliable
and fault tolerant peer-based applications particularly
challenging to implement. A peer that is distributing
or simply routing content may go offline at any time.
In this section, we outline how Pixie tolerates serving
peer faults and discuss the performance impacts of
our fault handling scheme.

6.1 Serving Peer Fault Handling
By using a digital fountain scheme or straightforward
reliable multicast scheme for reliability either over a
native or application-layer multicast infrastructure
we can ensure that data lost between the serving peer
and the receiving peer are eventually recovered.
However, we have not yet addressed how we recover
from serving peer faults. The most critical failure
case occurs when a serving peer fails during or before
its scheduled distribution. Failure can be the result of
system failure, network failure, or a user can simply
choose to take the peer offline, the so-called
freeriders problem. We make the assumption that
peers may go offline without any prior notification.
Therefore, we must develop a strategy for
rescheduling distributions that have not completed.
 First, let us consider the basic (e.g., no failure)
case when a user does not find an item of interest in
the schedule and must search for a piece of content
and schedule a distribution.

1. An interested peer searches for a piece of

content.
2. Once the piece of content has been found, the

requesting peer contacts the serving peer and
requests a distribution be scheduled.

3. An updateSchedule message is propagated to all
peers in the network.

4. At distribution time, the content is distributed to
all interested peers.

In the event that the serving peer fails, there must be a
strategy for detecting the failure and rescheduling the
distribution. For the purposes of this work, we
assume that a serving peer has failed if a receiving
peer expects to receive content from the serving peer,
but has not received data for some timeout period.
The determination of this timeout period is dependent
on many factors, including the underlying data
distribution protocol. Moreover, more advanced
schemes for detecting failures are also possible.
However, more sophisticated schemes are beyond the
scope of this work.
 Once a fault is detected, the distribution must be
rescheduled. To support our fault recovery
algorithm, we must modify the basic search and
schedule case as follows:

1. An interested peer searches for a piece of

content.
2. Once the piece of content has been found, the

requesting peer contacts the serving peer and
requests a distribution be scheduled.

3. Along with the request, the requesting peer
provides a list of all potential serving peers in the
network that initially responded to the search
request.

4. An updateSchedule message that includes the
complete list of potential serving peers is
propagated to all peers in the network.

5. At distribution time, the content is distributed to
all interested peers.

Using the cached search results, the general fault
recovery algorithm is as follows:

if the serving peer fails
 wait a random backoff period
 if the distribution has not resumed
 do
 select an alternate serving peer from the cached

 search results
 while the selected peer is not reachable
 request a new distribution from the selected peer
 on the same channel
 immediately, the new serving peer begins

distribution to all peers waiting for the
distribution

This strategy reschedules a failed distribution in an
efficient manner. First, the random backoff period
helps to avoid the case that multiple receiving peers

simultaneously detect a fault and attempt to
reschedule a distribution. The first peer to reach the
end of the backoff period will reschedule the
distribution and the remaining peers can take
advantage of the rescheduled distribution. Moreover,
using the same channel (e.g., multicast group
address) for the rescheduled distribution avoids the
overhead of sending out an additional
updateSchedule message. Only those peers that are
joined in the current distribution are affected.
Finally, because the original search responses are
cached in the schedule, there is no need to burden the
network with a new search.
 More advanced and efficient schemes for
handling faults and ensuring reliability are also
possible. For example, assuming the use of a digital
fountain-style scheme, if multiple peers store the
same content, they can be scheduled to distribute the
same file simultaneously on the same channel. If
neither serving peer fails, those receiving peers with a
high bandwidth connection can potentially receive
the file in half the time. Also, if one serving peer
fails, another peer is already in the process of
distributing the content. Moreover, if we used a more
reliable group management protocol such as Chord,
we could detect the failure of a peer and
automatically reschedule a distribution at the
infrastructure layer.

6.2 Performance Analysis
 Our serving peer fault handling scheme incurs
minimal cost. The goal of this paper is to compare
Pixie against a typical P2P file sharing application
such as Gnutella or Napster. Both of these
applications leave fault tolerance up to the user by
requiring that the user resubmit search queries or
download requests in the case of failure. Comparing
Pixie’s fault tolerance mechanisms to these typical
fault tolerance mechanisms would be an unfair
comparison. In this section, we discuss the
comparison between Pixie in a faulty network and
Pixie in a stable network. However, it is worth noting
that many of the performance penalties discussed
also apply to most if not all of the P2P file sharing
systems which have been deployed to date. Those
that do not are penalties associated with metrics
unique to our system.
 First, the metrics we evaluate in Section 4 and
Section 5 are not directly affected by serving peer
failure. Found remains the same even if peers fail
because the schedule is kept locally. Though, it is
possible that a peer has stale information in its
schedule. In other words, a peer, p1, could have in its
schedule an entry which denotes that another peer,

p2, has a piece of content even if p2 has failed. The
penalty is simply that p1 may have to reissue a
schedule request if it makes the initial request to a
failed peer.
 Number of search messages processed is also
likely to remain the same even if peers fail. The only
time it would increase with increased peer failure
would be when all serving peers associated with a
particular piece of content in the schedule failed
between the time the corresponding updateSchedule
message was applied to the schedule and when it was
removed.
 The updateSchedule Message overhead would
be modestly larger because our fault tolerance
scheme requires that the updateSchedule message
contain an entry for all peers that have the advertised
piece of content. This will add a few Kilobytes to the
updateSchedule message size as well as to the size of
the schedule. However, we do not believe this will
impact the performance of the system.
 Wait time will be unaffected unless a serving peer
fails before it even begins to deliver content. In this
case, there will be an additional delay associated with
contacting an alternate serving peer and rescheduling
the distribution. Because the schedule has
information about all potential serving peers, the
delay will not include any search time.
 Number serviced per distribution will only
improve in a faulty network. If there are fewer
serving peers to service requests, more requests will
be aggregated and serviced simultaneously using our
one-to-many delivery scheme.
 In addition, if we employ the proposed digital
fountain style scheme for reliability, there is a small
penalty associated with using Tornado codes. Some
redundant information is introduced and the impact is
that the number of bytes a receiving peer must
receive in order to reconstruct the original file is
5-10% greater [20] if we assume no serving peer
failures. However, the benefit of using Tornado
codes is that if a serving peer does fail, a receiving
peer can make use of the content it has already
received rather than starting again from the
beginning. If most failures occur after a serving peer
has delivered at least 10% of a data file, our scheme
will outperform typical P2P content delivery.
 Finally, there is a delay associated with
rescheduling an in-progress distribution. If a serving
peer fails, one of the receiving peers must request a
new distribution from another serving peer with the
same content and wait for that serving peer to begin
delivery. However, because each peer has a cache of
information about where content is available, the
receiving peer which requests the new distribution
does not need to perform another search of the

network. Additionally, unlike typical P2P file
sharing systems, we do not rely on the user to initiate
the new delivery.

7 Concluding Remarks
Pixie is an architecture designed to improve data
location and content distribution in peer-to-peer
networks. In Pixie, peer requests for content are
aggregated. A schedule of distribution times is
propagated throughout the network, and distribution
is done using a one-to-many distribution scheme.
Thus, a virtually limitless number of peers may take
advantage of the same distribution.
 In this work, we expand our previous work in two
ways. First, we examine Pixie's integration of
well-known reliable distribution protocols and
propose an algorithm for handling serving peer
faults. Second, we evaluate the tradeoff between the
overhead associated with maintaining the schedule
and the search savings gained by using the schedule
abstraction. Pixie can eliminate search overhead by
nearly 60% and, even with the schedule maintenance
overhead, outperforms a straightforward flooding
search scheme. Additionally, we summarize our
previous results which indicate that Pixie can greatly
reduce client wait time and server resource usage.
 Pixie also introduces a number of interesting areas
for future research. First, we would like to integrate
many-to-many content distribution into the Pixie
architecture. However, there are still a number of
unsolved challenges associated with many-to-many
content distribution such as which potential servers
should be selected to distribute content. We are also
interested in evaluating Pixie's behavior in an
unreliable network. We anticipate that, using Pixie, it
is likely that more peers will ultimately be serviced
under unreliable conditions.
 Peer content exchange is becoming more popular
and encompasses an increasing number of
applications. The content being exchanged is
becoming larger while the peer devices are becoming
smaller. One-to-one distribution in these scenarios is
inefficient if not impossible. Moreover, locating
content in larger and more diverse networks is even
more of a challenge. Using Pixie, we can reduce the
impact of these challenges and make content
exchange more efficient.

References
[1] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and

H. Balakrisnan, “Chord: A scalable peer-to-peer
lookup service for internet applications,” in
Sigcomm 2001, (San Diego, CA, USA), Aug.
2001.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker, “A scalable content-addressable
network,” in Sigcomm 2001, (San Diego, CA,
USA), Aug. 2001.

[3] S. Rollins and K. Almeroth, “Pixie: A jukebox
architecture to support efficient peer content
exchange,” in ACM Multimedia, (Juan Les Pins,
France), Dec. 2002.

[4] M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P.
Cappello, “Javelin++: Scalability issues in global
computing,” Concurrency: Practice and
Experience, vol. 12, pp. 727–753, 2000.

[5] D. Milojicic, V. Kalogeraki, R. Lukose, K.
Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z.
Xu, “Peer-to-peer computing,” Tech. Rep.
HPL-2002-57, Hewlett Packard Laboratories,
2002.

[6] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J.
Kubiatowicz, “Bayeux: An architecture for
scalable and fault-tolerant widearea data
dissemination,” in NOSSDAV, (Port Jefferson,
NY, USA), June 2001.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. Hong,
“Freenet: A distributed anonymous information
storage and retrieval system,” in Designing
Privacy Enhancing Technologies: International
Workshop on Design Issues in Anonymity and
Unobservability, (Berkeley, CA, USA), July
2000.

[8] B. Zhao, J. Kubiatowicz, and A. Joseph,
“Tapestry: An infrastructure for fault-tolerant
wide-area location an d routing,” Tech. Rep.
UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

[9] A. Rowstron and P. Druschel, “Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems,” in Middeware,
(Heidelberg, Germany), Nov. 2001.

[10] F. Dabek, M. Kaashoek, D. Karger, R. Morris,
and I. Stoica, “Wide-area cooperative storage
with CFS,” in SOSP 2001, (Banff, Canada), Oct.
2001.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, S.
Czerwinski, P. Eaton, D. Geels, R. Gummadi, S.
Rhea, H. Weatherspoon,W. Weimer, C.Wells,
and B. Zhao, “Oceanstore: An architecture for
global-scale persistent storage,” in ASPLOS,
(Cambridge, MA, USA), Nov. 2000.

[12] A. Rowstron and P. Druschel, “Storage
management and caching in PAST, a large-scale,
persistent, peer-to-peer storage utility,” in SOSP
2001, (Canada), Nov. 2001. [13] E. Adar and B.
Huberman, “Free riding on gnutella,” First
Monday, vol. 5, Oct. 2000.

[14] S. Saroiu, P. Gummadi, and S. Gribble, “A
measurement study of peer-to-peer file sharing
systems,” in MMCN, (San Jose, CA, USA), Jan.
2002.

[15] S. Rollins, R. Chalmers, J. Blanquer, and K.
Almeroth, “The active information system
(AIS):A model for developing scalable web
services,” in Internet Multimedia Systems and
Applications, (Kauai, Hawaii, USA), Aug. 2002.

[16] K. Almeroth and M. Ammar, “The interactive
multimedia jukebox (IMJ): A new paradigm for
the on-demand delivery of audio/video,” in
WWW7, (Brisbane, Australia), Apr. 1998.

[17] S. Sheu, K. Hua, and T. Hu, “Virtual batching:
A new scheduling technique for
video-on-demand servers,” in DASFAA,
(Melbourne, Australia), pp. 481–490, Apr. 1997.

[18] D. Helder and S. Jamin, “End-host multicast
communication using switch-tree protocols,” in
Workshop on Global and Peer-to-Peer
Computing on Large Scale Distributed Systems,
(Berlin, Germany), May 2002.

[19] S. Banerjee, B. Bhattacharjee, and C.
Kommareddy, “Scalable application layer
multicast,” in Sigcomm 2002, (Pittsburgh, PA,
USA), Aug. 2002.

[20] J. Byers, M. Luby, M. Mitzenmacher, and A.
Rege, “A digital fountain approach to reliable
distribution of bulk data,” in Sigcomm,
(Vancouver, British Columbia), pp. 56–67, Sept.
1998.

[21] G. Zipf, Human Behavior and the Principle of
Least Effort. Reading, MA: Addison-Wesley,
1949.

[22] M. Ripeanu, I. Foster, and A. Iamnitchi,
“Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications
for system design,” IEEE Internet Computing
Journal, Special Issue on Peer-to-Peer
Networking, vol. 6, no. 1, 2002.

