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Abstract 

 
Peer-to-peer (P2P) content exchange has recently 
gained attention from both the research and industrial 
communities.  The dynamic nature of peer networks 
and the resource constraints of peer hosts have 
introduced a number of unique technical challenges 
that must be addressed to make large-scale P2P 
content exchange applications more efficient.  In this 
work, we expand our previous work on Pixie, an 
architecture that integrates one-to-many distribution 
of content and peer networks.  Pixie uses a 
jukebox-style scheduling mechanism to provide a 
valuable data location service.  Users can browse a 
listing of all content scheduled to be distributed 
across the network thus reducing search overhead.  
Moreover, Pixie's use of one-to-many content 
distribution provides additional scalability.  Our 
results indicate that, using Pixie, we can significantly 
reduce the resources required to locate and distribute 
content in peer networks.  The properties Pixie 
embodies will become increasingly important as peer 
content exchange is extended to support more 
advanced, and possibly commercial applications. 
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1   Introduction 
Peer-to-peer (P2P) content exchange has recently 
gained attention from both the research and industrial 
communities.  Systems like Napster and Gnutella 
launched P2P into the spot light while systems like 
Chord [1] and CAN [2] have gone a step further in 
terms of supporting reliable and efficient content 
exchange. The range of applications that fall into the 
P2P space has exploded.  From distributed 
computation to distributed file storage, any 
application that supports cooperation between end 
hosts is often considered P2P.  However, as P2P 
becomes recognized as more than just the latest 
buzzword, there is a call to identify and solve the 
technical challenges that are faced in P2P 

environments.  The dynamic nature of peer networks 
and the resource constraints of peer hosts have 
introduced a number of unique technical problems.  
Also, while most early deployments work, they are 
really only simple prototypes and leave many 
important problems unsolved. 
     In this work, we extend our previous work on 
Pixie [3] an architecture that integrates one-to-many 
distribution of content and peer networks.  In Pixie, 
peers join the network and retrieve a schedule of 
content to be distributed.  Peers can browse the 
schedule and choose to take advantage of an 
already-scheduled distribution.  Alternatively, a peer 
can choose to request that a new distribution be 
scheduled.  At the time a distribution is scheduled to 
begin, the serving peer distributes content to all 
interested peers using any of the available 
one-to-many communication technologies.  While 
native multicast is the most efficient strategy, the 
techniques we describe in this work are independent 
of the chosen delivery mechanism. 
     Pixie differs from traditional P2P systems in that it 
provides a new data location service.  Its schedule of 
content currently being delivered, or about to be 
delivered, serves as a browsable index.  In addition, 
this schedule can reduce searching overhead, in many 
cases by more than half.  Also, by aggregating client 
requests and using one-to-many batched content 
distribution, we can actually reduce client wait time 
by reducing queuing delays as well as reduce the use 
of resources such as disk space, distribution time, and 
bandwidth on the serving peer.  In the future, we plan 
to investigate additional savings which may be 
gained by using a many-to-many distribution scheme 
in an unreliable network.  However, the focus of this 
work is to validate the service model Pixie supports 
by investigating the performance tradeoffs involved 
with using Pixie as a data location service.   
     This paper expands our previous work in two 
ways.  First, we further evaluate the tradeoff between 
Pixie search savings and the overhead incurred by the 
Pixie scheme.  Our results indicate that Pixie reduces 
search overhead by over half while incurring a 
manageable overhead with respect to schedule 



maintenance.  In fact, even with the schedule 
maintenance overhead, Pixie outperforms a 
Gnutella-style flooding search scheme.  Additionally, 
we address reliability and fault handling in Pixie.  We 
discuss Pixie's use of existing reliable, one-to-many 
data distribution protocols as well as the Pixie 
protocol for handling serving peer faults. 
     This paper is organized as follows.  In Section 2 
we define peer-to-peer and explore current solutions 
to the challenges facing P2P applications.  Section 3 
presents our architecture.  In Section 4, we quantify 
the benefit of using Pixie as a data location service 
and evaluate the tradeoff between the search savings 
and schedule maintenance overhead of Pixie.  In 
Section 5, we evaluate the benefits of using 
one-to-many content distribution in Pixie.  Section 6 
expands on our fault handling scheme.  We conclude 
in Section 7. 

 
2   Related Work 
In this section, we first look at the current impact of 
P2P content exchange and then address some of the 
limitations facing P2P networks. 
 
 
2.1 P2P Content Exchange 
P2P encompasses a huge area, from distributed 
computing [4] to collaborative applications [5].  
Applications such as classroom educational tools that 
enable users to communicate are often considered 
P2P regardless of their implementation.  
Alternatively, tools such as application-layer 
multicast [6] that are implemented using a P2P 
model, yet support a variety of applications, also fall 
within the P2P space.  In this work, we focus on P2P 
content exchange applications.  This includes the 
tools, protocols, and applications that support 
exchange of content between end users. 
     Napster's pioneering efforts spawned a number of 
academic and industrial projects aimed at developing 
efficient, P2P content exchange applications.  The 
primary use of these applications has been the 
exchange of MP3 music files.  But, factors such as 
increased disk space and higher bandwidth are 
enabling exchange of other forms of media such as 
digital video.  As more peers increasingly send more 
and larger files, a number of challenges become 
apparent. 
 
 
2.2 Challenges of P2P Content Exchange 
As the range of P2P applications increases, P2P 
content exchange faces a number of challenges.  We 
classify the set of challenges into three areas: peer 

discovery and group management, data location, and 
reliable and efficient content exchange. 
 
2.2.1 Peer Discovery and Group Management 
The dynamic, ad hoc nature of peer groups makes it 
difficult to implement peer discovery and group 
management algorithms.  Centralized solutions 
largely defeat the purpose of a peer network and can 
be too restrictive if a centralized infrastructure is not 
available.  On the other hand, distributed solutions 
generally require a great deal of overhead in terms of 
state kept about other peers and messaging required 
to maintain that state.  
     Discovery and management of peer groups can be 
implemented using a centralized solution, a 
distributed solution, or a hybrid solution.  Centralized 
solutions such as those used in Napster, Magi, and 
Groove are most efficient because peers need not 
keep state about other peers.  Moreover, peers can 
locate each other with a single request to the 
centralized directory.  The problem with this 
approach is that it requires a centralized 
infrastructure.  Such an infrastructure may not always 
be available or may introduce a central point of 
failure which minimizes the benefit of a P2P system.   
     Distributed solutions such as Gnutella, FreeNet 
[7], Chord [1], CAN [2], Tapestry [8], and Pastry [9] 
generally rely on using a well-known peer to discover 
the rest of the peer group.  However, the group 
management protocols employed by these solutions 
are distributed.  In Gnutella and FreeNet, a peer keeps 
track of a constant number of other peers.  This is 
efficient in terms of the state kept at each peer.  The 
problem with the approach is that searching the peer 
network may be slow.   
     Chord, CAN, Tapestry, and Pastry represent the 
second-generation of P2P protocols also known as 
Distributed Hash Tables (DHTs).  In each of these 
protocols, the network is organized such that peers 
keep track of a logarithmic number of other peers 
(with respect to the number of peers in the network).  
When searching, the protocols can guarantee, or 
guarantee with high probability, that the desired item 
can be located in a logarithmic number of peer hops. 
     Peer discovery and group management is the 
primary focus of P2P content exchange research.  We 
believe that the research in this area is promising.  
Therefore, in this work, we focus our attention on the 
following two aspects of content exchange. 

 
2.2.2 Data Location 
The distributed nature of peer networks makes data 
location a difficult problem.  Having a centralized 
index or catalogue of available content again defeats 
the purpose of a P2P solution and may not be possible 



if no centralized infrastructure exists.  At the other 
extreme, a fully replicated index wastes resources at 
each peer and would be difficult, if not impossible, to 
maintain in a dynamic environment. 
     Most of the work on supporting data location in 
peer networks has focused on on-demand searches 
for information.  Systems like Gnutella and Napster, 
as well as CFS [10], OceanStore [11], and PAST 
[12], systems built on top of Chord, Tapestry, and 
Pastry respectively, allow the user to search for a 
particular document.  The user must know the name 
of the document prior to requesting it and searching is 
then performed on-demand.  While many of these 
systems claim to support file system-like 
functionality, the infrastructures do not support file 
system-like content location.  Providing that kind of 
support would require the application to keep track of 
metadata about each user's files.  Even so, this facility 
would not support exchange of content between 
users. 
     Users may not always have a target item they wish 
to download.  Our solution provides users with 
catalogue of content that they can browse.  The 
benefits of organizing content into a browsable 
catalogue include both a more pleasurable user 
experience as well as a reduction of bandwidth and 
processing power required when searching for 
information. 

 
2.2.3 Reliable and Efficient Exchange 
End-user peers are inherently resource constrained.  
Especially when compared to centrally administered 
servers, end-user devices (e.g., desktops, laptops, or 
PDAs) are restricted with respect to bandwidth, disk 
space, processing power, as well as up-time since 
peers cannot be relied upon to remain connected for 
any specific length of time.  This limitation makes 
reliable content exchange more challenging in the 
P2P environment.  New and innovative schemes 
must be employed to provide fast downloads and 
avoid overloading the resources of peers that store 
hot items. 
     In the P2P space, techniques for making content 
exchange more reliable and efficient have relied on 
replicating data within the network.  Most deployed 
systems such as Napster and Gnutella rely on the 
assumption that data are inherently replicated 
throughout the network. First, the user selects the 
best peer from which to download content.  If the 
download request fails, generally because the other 
peer is not reachable, the user must try a different 
peer.   
     This model begins to break down when hot data is 
stored on only a small number of peers.  Especially if 
the peers are resource-constrained, they may not be 

able to support multiple simultaneous requests from 
the remainder of the network.  This problem is further 
exaggerated by the fact that peer networks are often 
composed primarily of freeriders [13,14], peers that 
are only part of the network long enough to retrieve 
content from other peers.   
     As peer networks grow, and as multimedia 
content becomes larger and consumes more 
resources such as disk space and bandwidth, a more 
efficient scheme for exchanging content is required.  
In this work, we focus on the latter two challenges.  
Pixie addresses the problem of data location by 
providing a browsable catalogue of popular content 
available across the network.  Moreover, the 
catalogue caches the location of content making data 
location more resource-efficient.  Additionally, we 
address the challenge of efficient exchange of content 
by batching requests for content and servicing 
hundreds or thousands of requests simultaneously.  
From the client perspective, this greatly reduces the 
wait time experienced after issuing a request.  From 
the server perspective, we greatly reduce the 
resources required at the serving peer including disk 
space, distribution time, and bandwidth. 
 
3 Pixie System Design 
To overcome many of the challenges of traditional 
P2P content exchange systems, we explore using 
one-to-many content distribution in peer networks.  
In this section, we discuss the motivation of our 
work, provide an overview of Pixie, and discuss the 
architecture in more detail. 
 
 
3.1 The AIS 
Our architecture is inspired by the Active 
Information System (AIS) [15], a near-on-demand 
architecture to support scalable content delivery.   
The AIS batches client requests for content and 
produces a schedule of the content to be 
disseminated.  When a client tunes in to the system, 
the client may choose to receive content already 
scheduled, or may choose to schedule a new 
distribution.  The tradeoff in this case is the time the 
user must wait to receive content.  Dissemination is 
done using multicast thus relieving much of the 
burden on the network.   
     The AIS batching paradigm is well-suited for P2P 
content exchange.  By batching download requests 
and distributing content to multiple peers in parallel, 
we can ease much of the burden placed on the serving 
peer as well as the network.  Additionally, the 
schedule of content to be distributed acts as a hot list 



catalogue.  Users can consult the schedule to browse 
content available in the network.   
     Unfortunately, the current design of the AIS is 
targeted toward centralized, video-on-demand (VoD) 
style applications [16] and is not well-suited to 
deployment in a P2P network.  We have borrowed 
the AIS paradigm to create an extended architecture 
to support efficient, scalable, P2P content exchange.  
Other solutions such as Virtual Batching [17] 
propose distributed distribution schemes to support 
VoD applications.  However, Pixie differs from the 
Virtual Batching approach in two main ways.  First, 
we address the challenge of data location by 

providing a schedule of content to the user.  
Additionally, our goal is to reduce resource usage 
across the entire network, not just at the server.  
Another similar approach is Jungle Monkey [18].  
The main contribution of Jungle Monkey is an 
underlying end-host multicast protocol.  Pixie could 
be built on top of such a protocol to provide reliable 
distribution of content and control messages.     
 
 
3.2 Pixie Overview 
 

 
 

 
Figure 1: Overlapping requests are aggregated at the serving peer. 

 
Pixie is an architecture which supports one-to-many 
distribution of content in peer networks.  The first 
goal of Pixie is to aggregate peer requests to 
download content and use intelligent, one-to-many 
content delivery (e.g., multicast) to enable a large 
number of peers to take advantage of the same 
distribution (see Figure 1).  The second goal is to 
publish a schedule of content to be distributed to 
allow users to browse through the most popular 
subset of content available across the network.  Pixie 
can be implemented on top of virtually any peer 
group management protocol.  When a peer joins the 
network, it requests the schedule.  The schedule 
contains information about content that will be 
distributed (e.g., Gone with the Wind), how the peer 
is to receive the content (i.e., the IP address of the 
multicast group), and when the distribution is 

scheduled to begin (e.g., 8pm GST).  If a user is not 
interested in content already scheduled for 
distribution, the user may choose to search for and 
schedule new content.  When a new distribution is 
scheduled, an updateSchedule message is propagated 
to all peers indicating the name of the content that 
will be distributed, how an interested peer can receive 
the content, and the scheduled distribution time.  At 
distribution time, interested peers tune in to the 
distribution.   
     Using this model, peers are able to more rapidly 
and efficiently locate data of interest.  The schedule 
provides a new service, acting as a browsable hot list 
of available content within the network.  Assuming 
that many users are interested in the same content, it 
is likely that a user will find the content he or she is 



interested in by looking at the schedule, thus easing 
the burden on the network.   
     By distributing content using one-to-many 
distribution, we provide additional scalability 
properties as well.  Efficiency gains come from 
reducing the load on peers by aggregating requests 
and servicing multiple peers simultaneously.  At the 
scheduled time, the sending peer distributes the 

information using one-to-many distribution.  All 
interested peers simply tune in and receive the 
content.   
 
 
3.3 Pixie Architecture 
 

 

 
Figure 2: Architecture of a Pixie peer. 

 
Figure 2 shows the general architecture of a Pixie 
peer.  The Pixie components are implemented on top 
of a group management layer.  We place no 
restrictions on the group management protocol.  We 
envision anything from Napster-style centralized 
management to Gnutella-style distributed 
management to Chord-style distributed management.  
We discuss each component in more detail: 
 
ScheduleManager. The ScheduleManager controls 
access to the schedule.  The schedule contains 
information about which data are scheduled to be 
distributed, when distribution will begin, and where 
the data will be distributed.  It is the equivalent of a 
TV guide that indicates which programs will be 
showing, at what time, and on which channel.  Each 
peer can retrieve a copy of the schedule when joining 
the network or can simply join the network and 
receive any future updates.  Where the original copy 
is found depends on the group management 
algorithm employed.  In a Napster-style network, a 
getSchedule request will be routed to the centralized 
server.  In a Gnutella-style network, a getSchedule 

request will be routed to a neighboring peer.  We 
consider the schedule to be best effort in that we do 
not guarantee the peer will receive the latest version.  
However, if a peer receives a stale version and 
attempts to search for or schedule an 
already-scheduled piece of content, the peer serving 
the content will simply respond with an update 
indicating where and when the content is already 
scheduled.  The ScheduleManager also receives and 
applies any updates to the schedule.  Schedule 
updates contain relevant information about newly 
scheduled distributions (i.e., the content to be 
distributed, when the distribution will begin, and 
where the data will be distributed).   
 
Scheduler. The Scheduler handles the scheduling of 
content distribution for a given peer.  When the 
Scheduler receives a request for new content, it 
determines when the peer will have the resources 
available to fulfill the request.  For example, if a peer 
can only support two simultaneous distributions and 
it is already distributing two streams, the new 
distribution must wait at least until one of the 



distributions has finished.  The Scheduler may also 
apply more advanced scheduling algorithms such as 
delaying distribution in anticipation that more peers 
will be interested in the same content in the near 
future.  Once the distribution has been scheduled, an 
updateSchedule message is generated and sent to all 
peers in the network.  The most straightforward 
method of distributing the updateSchedule message 
is via multicast (native or application-layer), though a 
broadcast or gossiping scheme could also be used.  In 
the multicast case, an additional optimization is to 
use the group abstraction to enable a user to filter out 
updates for uninteresting content.  For example, if a 
user is not interested in action movies, that user may 
not subscribe to the multicast group which distributes 
updates for scheduled deliveries of action movies.  
An analysis of this optimization is the subject of 
future work. 
     In a decentralized system, the Scheduler will exist 
on each peer and each peer will be responsible for 
scheduling distribution of its own content.  However, 
a centralized implementation could also be 
employed.  In a Napster-style system, a centralized 
authority would have information about each peer 
and could make scheduling decisions based upon that 
global information.  This may be more efficient in 
terms of resource usage, however would require the 
presence of a centralized infrastructure. 
 
ContentManager. The ContentManager controls 
access to the data stored on each peer.  If a peer is not 
interested in scheduled content, it can search the 
network for other content.  Search requests are routed 
through the network in a manner consistent with the 
underlying group management protocol.  For 
example, using a Napster protocol, search requests 
would be routed to a centralized server while if using 
a Gnutella protocol, requests would be routed to 
neighboring peers.  When a peer receives a search 
request, the ContentManager consults the content 
base and responds with information about content 
matching the search query.  In a Gnutella-style 
network, the search request would then be forwarded 
to neighboring peers.   
     The ContentManager is also responsible for 
distributing content and receiving and storing content 
distributed by other peers.  At the scheduled time, the 
ContentManager distributes the content, preferably 
using multicast.  While network-layer multicast is the 
most efficient distribution mechanism, 
application-layer multicast distribution can be 
employed for peers without multicast connectivity.  
A number of appropriate application-layer multicast 
schemes have recently been developed for the 
peer-to-peer environment [6,18].  These schemes 

distribute the burden of content delivery among the 
participating peers.  They offer low overhead for the 
participating peers and minimal delay with respect to 
the time to propagate a message from the root to the 
leaves of the multicast tree.   
     To ensure reliability, Pixie can use a basic reliable 
multicast distribution scheme for delivery of both 
content and control messages.  However, any 
straightforward reliable protocol run over either 
native or application-layer multicast requires 
receivers to join the distribution from the beginning.  
Moreover, if a serving peer fails, a new serving peer 
must start the distribution again from the beginning.  
To overcome this limitation, we propose and evaluate 
the use of a digital fountain-style scheme [20].  Using 
a digital fountain scheme, the ContentManager 
distributes files that have been encoded using 
Tornado codes.  The serving peer continuously 
distributes blocks of the encoded file until the client 
peer has received a sufficient number of blocks to 
reconstruct the file.  Since blocks may be received in 
any order, a client can join the distribution at any 
time and take advantage of the distribution in 
progress.  Similarly, if N blocks are needed to 
reconstruct a file and a serving peer fails after a 
corresponding receiving peer has received N-X 
blocks, the receiving peer can join a new distribution 
and will only need to receive the remaining X blocks.   
     Using this scheme, a peer can potentially remain 
continuously occupied, distributing the same file.  In 
the most extreme case, a serving peer distributing a 
file that requires N blocks to decode will receive a 
new request for the file after almost all blocks have 
been sent.  In some cases, this behavior may be 
desirable.  However, a peer that stores multiple 
pieces of popular content may need to perform some 
form of internal load balancing to ensure that it can 
service requests for multiple pieces of content.  We 
leave the details of this scheme as future work. 
 
 
UserEventManager. The UserEventManager 
processes events from the user and interacts with the 
user interface.  It initiates searches for content 
specified by the user, requests new content be 
scheduled, and receives and displays search 
responses.  This component is quite flexible and can 
be implemented to suit the preferred user interface. 
 
4 Evaluation of Pixie Data Location 
In this section, we evaluate the benefit of using Pixie 
as a data location service in a peer network.  First, we 
look at the metrics we evaluate and the setup of our 
experiments.  Then, we look at the results of our 



experiments that evaluate the tradeoff between the 
search savings gained by using Pixie, and the 
additional overhead of Pixie updateSchedule 
messages.  Our conclusion is that, especially in 
flooding networks like Gnutella, using Pixie requires 
fewer search messages while incurring minimal 
overhead. 
 
 
4.1 Metrics 
To evaluate the benefit of Pixie, we are interested in 
three primary metrics:   
 
1. Found – Found describes how often the user is 

interested in a particular item and is able to find 
that item in the schedule.  This metric provides us 
with an idea of how useful the schedule 
abstraction is from the user perspective. 

2. Number of Search Messages Processed – 
Number of Search Messages Processed provides 
a quantification of the search overhead incurred 
by Pixie versus the overhead incurred using a 
straightforward search scheme. 

3. updateSchedule Message Overhead –  
updateSchedule Message Overhead shows the 
overhead of distributing updateSchedule 
messages throughout the network.  This metric 
provides an idea of the cost associated with using 
the Pixie scheme. 

 
 
4.2 Setup 
To evaluate these metrics, we have simulated the 
schedule portion of our architecture.  When a request 
is made, it is processed according to the following 
algorithm: 
 
if the requested item is scheduled 
  record as found 
  if the distribution has started 
    schedule at end time of current distribution     
    send updateSchedule message to entire network 
else 
  send search message 
  schedule at current time + 1 minute delay 
 
In this experiment, we assume distribution is done 
through a basic, reliable one-to-many distribution 
service such that users can only join the distribution 
from the beginning.  An item remains in the schedule 
from the time it is scheduled until it has been 
distributed.   
     This model does not entirely capture two cases.  
First, we do not capture the case when scheduling 
incurs an additional delay because a peer's resources 

are otherwise occupied.  However, we claim that the 
model we use is, in fact, the most restrictive for the 
metrics we consider.  Lower delay means that items 
remain in the schedule for a shorter period of time 
and are less likely to be found.  Incurring an 
additional delay because a peer is distributing other 
content or is otherwise busy would only improve our 
results.  Additionally, we do not consider a 
many-to-many scheduling scheme.  However, if such 
a scheme were to use intelligent updateSchedule 
propagation techniques, it would not affect any of the 
metrics we consider here. 
 

Min  
Time (sec)

Max 
Time (sec) 

Description 

1 500 Fast Connection/ 
High Variance 

10 50 Fast Connection/ 
Low Variance 

3800 4300 Mid Connection 
10800 21600 Slow Connection/ 

High Variance 
15120 16920 Slow Connection/ 

Low Variance 
120 180 Typical of Current  

Usage 

Table 1: Object distribution times. 

 
To model user behavior, we generate a trace of 
requests using a Zipf distribution [21].  Recent 
studies have shown this to be typical for current P2P 
systems 1 .  Unless otherwise noted, we assume a 
network size of 15,000 peers, use a catalogue of 
400,000 items, and run the experiment for a 
simulated period of 8 hours.  We have also run 
simulations over a simulated period of 24 hours and 
observed similar results.  To analyze the behavior of 
the system, we vary three main parameters:  
 
1. Load – We look at the system behavior under 

different load conditions by varying the number 
of requests per second made across the network 
from 20-90.  Values are taken from recent studies 
of the Gnutella network [14, 22] which indicate 
that a single peer services or routes roughly 20 
requests per second.  

2. Peer Characteristics – We look at the behavior 
of the system based on different peer 
characteristics by varying the time it takes to 

                                                            
1 
http://www-2.cs.cmu.edu/~kunwadee/r
esearch/p2p/gnutella.html 
 



distribute a single object (see Table 1).  Small 
values for the distribution time can be the result 
of a fast connection or a small object.  A large 
disparity between the min and max times is the 
result of highly varying peer characteristics.  
Each distribution time is chosen randomly 
between the minimum and maximum times. 

3. Network Size – We look at the system behavior 
as the network size (e.g., number of participating 

peers) varies.  We look at a small network of 500 
nodes, a moderately sized network of 15,000 
nodes, and a large network of 50,000 nodes. 

 
 
4.3 Results 
 

 

 
Figure 3: Number of items found over time for varied requests per second. 

 

 
Figure 4: Number of items found over time for varied distribution times. 

 
Figure 3 and Figure 4 illustrate how the number of 
items found changes over time for varied load and 
varied peer characteristics.  In Figure 3, we fix the 
minimum and maximum distribution times at 1 and 
500 seconds respectively.  We observe that the 

greater the number of requests per second seen by the 
network, the greater the number found items at each 1 
minute interval.  This is not surprising since a greater 
number of requests will mean that the schedule of 
distributions is larger and there is a greater 



probability of overlap.   
     We also observe that, in all cases including the 
case when the load spikes from 30 to 80 requests per 
second from minute 120 to minute 180, the number 
of found items stabilizes quickly and remains stable 
throughout the experiment.  This property allows us 
to conclude that under varying load conditions, the 
system will remain stable.  
     Another interesting observation is that the 
percentage of requests that are found remains 
relatively stable throughout the experiment.  The 
percentage of found items ranges from 54.0% overall 
in the 20 requests per second case to 65.1% overall in 
the 90 requests per second case.  Thus, we can 
extrapolate that even under varying load conditions, 
nearly the same percentage of requests will be found 
overall.   
     In Figure 4 we fix the load at 40 requests per 
second and vary the item distribution time.  The item 
distribution time is the amount of time it takes to 
distribute a particular item.  We observe that the 
greater the distribution time, the greater the number 
of found items at each one minute time interval.  The 
reason for this behavior is that items with longer 
distribution times will remain in the schedule longer.  

Hence, the schedule itself will be larger and the 
probability of finding an item in the schedule will be 
higher.  Additionally, when items have longer 
distribution times, the system takes longer to 
stabilize.  This is because no items are removed from 
the schedule until the initially scheduled distributions 
finish.   
     We also observe that faster distribution times 
result in fewer found items overall.  This is simply 
because when requests are processed faster, there is 
less opportunity to find a scheduled or executing 
distribution.  Our results indicate that when 
downloads occur very quickly (10-50 seconds), the 
percentage of items found in the schedule is 48.1%.  
This is still a substantial percentage and would still 
render our system useful.   
     Our final observation is that slower connections 
with low variance tend to be quite cyclic.  This is 
largely because the low variance means that all 
requests initially scheduled are likely to finish at 
nearly the same time and new requests will be 
scheduled at that time.  This behavior is less likely to 
occur in a system with varying load, or one in which 
the load gradually builds up to a stable point. 
 

 

 
Figure 5: Number of search messages processed in a centralized scheme. 

 
 



 
Figure 6: Number of search messages processed in a flooding scheme. 

 
Figure 7: Number of search messages processed in a document routing scheme. 

 
To quantify the search savings in Pixie, Figure 5, 
Figure 6, and Figure 7 illustrate the number of search 
messages that are processed in Pixie versus three 
standard search schemes.  In each case, we assume 
that Pixie runs over the corresponding group 
management scheme we compare against.  For 
example, in Figure 5, we assume that Pixie runs on top 
of a centralized group management protocol.  In this 
case, we assume the existence of a Napster-like 
centralized server where all metadata is stored.  
When a Pixie peer becomes interested in a piece of 
content, it sends a search message to the centralized 
server which responds with a list of peers which have 
the desired content.  To be fair, we compare this 
Centralized Pixie Search scheme to a Napster-like 
centralized search scheme which would incur the 
same additional overhead such as the initial upload of 

metadata.  We also look at Flooding Pixie Search 
and Document Routing Pixie Search in comparison 
to a Gnutella-like scheme and a DHT-like scheme 
respectively.  In the flooding case, we assume that 
Pixie runs on top of a Gnutella-style network.  We 
assume that when a Pixie peer becomes interested in 
a particular piece of content, it sends a message to all 
of the peers it knows about.  All of those peers send 
the message to all peers they know about, and so on.  
Our assumption is that the search message is 
processed by all peers in the network.  In the 
document routing case, we assume that Pixie runs on 
top of a DHT such as CAN.  In this case, we assume 
that the respective routing algorithm is used, and that 
log N peers process each search message (where N is 
the total number of peers in the network).  We assume 
a network size of 15,000 nodes which is consistent 



with recent studies of the Gnutella network [14].   
     Our first observation is that Pixie reduces the total 
number of search messages processed by over half.  
In a centralized network, the savings is about 1,400 
messages per minute.  However, in a document 
routing network the savings is roughly 14,000 
messages per minute, and in a flooding scheme, the 
savings is over 21,000,000 messages per minute.  The 
disparity can be explained by the fact that each search 
scheme requires a different number of peers process 
each search message.  Given our network size of 
15,000 nodes, using Pixie instead of a flooding 
scheme saves approximately 24 messages per second 
per peer.   
     We also observe that the shapes of the curves for 
the three classes of search scheme are nearly 
identical.  This is the result of using the same trace 
data for each experiment.  However, as previously 

observed, the scale of the results varies for each 
scheme.  A flooding scheme generates significantly 
more traffic overall than a centralized scheme.  
Therefore, Pixie is more beneficial in the flooding 
case.   
     Our final observation is that all schemes are very 
stable.   The stability of the centralized, flooding, and 
document routing schemes can be explained by the 
fact that we assume that the network is stable, and we 
assume that the same number of messages are 
processed for each search.  In reality, factors such as 
network instability, user behavior, and network 
configuration could affect the stability of these 
schemes.  However, we also observe that Pixie is 
nearly as stable as the schemes we compare against.  
Therefore, in a stable network, Pixie is likely to be 
well behaved and consistently perform well. 
 

 

 
Figure 8: Number of updateSchedule messages processed at each node per minute. 

 
While Pixie dramatically reduces the number of 
search messages processed in a P2P network, Pixie 
does incur the cost of additional updateSchedule 
messages that are flooded throughout the network for 
every scheduled distribution.  In Figure 8, we examine 
the number of updateSchedule messages processed at 
each node in the network.  We vary the load from 20 
requests per second to 80 requests per second and 
look at the average number of updateSchedule 
messages per second processed at each node for 
every one minute time interval.   
     Our first observation is that the more heavily 
loaded the network, the more overhead incurred.  
This follows from the fact that a more heavily loaded 
network will have more scheduled distributions and 

hence more updates.  However, we notice that even in 
a heavily loaded network supporting 80 requests per 
second, fewer than half the requests result in an 
updateSchedule message.  Moreover, in a moderately 
loaded network of 40 requests per second, each node 
sees fewer than 20 updates per second.  We believe 
this to be a reasonable tradeoff for the search savings 
and enhanced user experience gained by using the 
Pixie scheduling scheme. 
     We further observe that the number of 
updateSchedule messages sent remains stable 
throughout the 480 minute run of the experiment.  
Therefore, we can conclude that in a stable network, 
Pixie will remain stable as well. 
 

 



 
Figure 9: Search and search plus overhead in a small network. 

 

 
Figure 10: Search and search plus overhead in a large network. 

 
Our final set of experiments further examines the 
tradeoff between the search savings gained by using 
Pixie and the overhead required by the 
updateSchedule messages.  We present the number of 
search messages processed in a straightforward 
flooding search (FS) and the total number of search 
messages plus the number of updateSchedule 
messages (overhead) processed in a Pixie flooding 
search scheme (P+O).  We vary the load from 20 
requests per second to 90 requests per second and 
look at the total number of messages processed 
during each one minute time interval.  In Figure 9 we 
assume a small network of 5,000 nodes and in Figure 
10 we assume a large network of 50,000 nodes.  We 
omit the results of the same experiment run on a 
medium-sized network of 15,000 nodes for clarity of 

presentation.  However, the results were as expected. 
     Again, we use the same trace data for each 
experiment and thus observe the same phenomenon 
we observed in Figures 5, 6, and 7.  Our curves are 
consistent, however, the larger the network, the more 
absolute savings.  We see about a ten fold increase in 
savings from roughly 1,200,000 messages per minute 
to roughly 12,000,000 messages per minute from the 
5,000 node network to the 50,000 node network.   
     We further observe that the more heavily loaded 
the network, the greater the disparity between Pixie 
and the flooding search scheme.  Therefore, the more 
heavily loaded the network, the more benefit we gain 
by using Pixie.  Even in a lightly loaded network, 
Pixie requires roughly an equivalent number of total 
messages to the flooding scheme.  Further, we 



contend that updateSchedule messages require less 
processing and therefore, even in a lightly loaded 
network, we benefit from using Pixie.   
 
4.4 Discussion 
Pixie introduces a new model for P2P content 
exchange.  From a user's perspective, Pixie means 
that P2P is no longer simply pull-based, on-demand 
information exchange.  Information about the most 
popular content is actually pushed to the end user.  
Our results show that, in a moderately loaded system, 
over half of the time the user can find an item of 
interest by simply browsing the schedule of content.  
This not only improves the user experience, it greatly 
reduces the number of search messages flowing in 
the network. 
     However, there is a tradeoff between the search 
savings in Pixie, and the minimal overhead incurred 
by the updateSchedule messages.  Fortunately, our 
results indicate that the updateSchedule message 
overhead is manageable.  In fact, Pixie outperforms a 
flooding search network like Gnutella even with the 
additional updateSchedule overhead.  Therefore, we 
conclude that Pixie provides both a desirable and 
efficient data location service. 
 
5 Evaluation of Pixie Distribution 
In this section, we quantify the benefit of aggregating 
requests and batching content distribution in P2P 
networks.  Using Pixie, we can reduce the load on the 
serving peer as well as the wait time of the requesting 
peers.   
 
 
5.1 Metrics 
We are interested in two primary metrics: 
 
1. Wait Time – In order to evaluate the benefit 

aggregation provides to the client, or requesting 
peer, we look at wait time.  Wait time describes 
the amount of time the client must wait from the 
time it requests a piece of content until the 
distribution begins. 

2. Number Serviced per Distribution – To 
evaluate the benefit aggregation provides to the 
serving peer, we look at the number of clients 
satisfied with each distribution.  Using this 
metric, we can extrapolate on the resource 
savings of using an aggregation scheme. 

 
 
5.2 Setup 
To evaluate these metrics, we have simulated a single 
peer receiving and servicing requests.  Since most 

peers act in a similar manner, modeling a single peer 
will provide us with adequate information to evaluate 
the desired metrics.  If the peer receives a request for 
content that is already scheduled but has not begun, 
that request is aggregated and will be serviced by the 
already-scheduled distribution.  If the request is for 
content that is not scheduled or is already being 
distributed, the peer schedules a new distribution of 
the requested content.  We compare three scheduling 
schemes with respect to our target metrics. 
     We generate our traces using the parameters 
outlined in Section 4.  Unless otherwise noted, 
experiments are run for 480 minutes, item 
distribution time is between 1 and 500 seconds, 40 
requests per second are made across the entire 
network, and the serving peer stores one piece of 
moderately popular content.  Of the 40 requests per 
second made across the network, only those requests 
for the content stored on the serving peer will be 
processed.  All scheduling is done first come first 
served with respect to the requests for content.  We 
discuss each of the scheduling schemes evaluated in 
more detail: 
 
1. FCFS – This is the base case, first come, first 

served, no aggregation-no delay scheme.  
Distribution is one-to-one as is the case is current 
P2P systems and requests are serviced as soon as 
they are received. 

2. AGG-<DELAY> – This is an aggregation-delay 
scheme.  Multicast distributions of requested 
content are scheduled with delay <DELAY>, 
specified in minutes. 

3. DF-<DELAY>-<MAXDIST> – This is a digital 
fountain-delay-maximum distribution time 
scheme.  Digital fountain style distributions [20], 
are scheduled with delay <DELAY> as in the 
previous scheme.  In addition, since the digital 
fountain scheme can cause starvation if requests 
for the same content continue to arrive, 
<MAXDIST> is a variable that specifies the 
maximum number of times a single distribution 
can be extended. 

 
 
5.3 Results 
We present the results of two experiments.  In the 
first experiment we look at our target metrics in the 
base case.  In the second experiment we take a 
slightly different look at the wait time metric while 
varying the load across the network.   
 
 



 

 
Figure 11: Number of requests experiencing each wait time at 40 requests per second. 

 
Figure 11 plots the number of requests that experience 
each given wait time throughout the 480 minute 
experiment.  In the FCFS case, many requests are 
made and queued, but not serviced within the 480 
minute window.  This is a common occurrence and 
illustrates the instability of the system using a FCFS 
scheme.  Unserviced requests will remain in the 
queue of waiting requests at the end of the 480 
minutes and are not reported here.  We have 
truncated the FCFS data for presentation, but what 
happens in the FCFS case is that most of the serviced 
requests are issued in the first few timesteps.  
Because they are serviced sequentially, each request 
waits from the beginning of the experiment until the 
time it is serviced and the time waited increases 
linearly for each serviced request.  In fact, the final 
request serviced waits for 25,487 seconds.     
     While the FCFS wait times increase linearly, in all 
aggregation schemes compared, the wait time 
remains relatively constant.  Using aggregation, no 
request ever waits for greater than 500 seconds 
because, in the worst case, a request will be issued 
just as a distribution is starting, hence the request will 
have to wait the duration of the distribution.  This 
worst case would be affected if the serving peer 
stored more than one piece of content.  In the worst 
case, a peer storing N pieces of content would 
schedule them sequentially, 1, 2,...,N.  If a request for 
1 was issued right after the distribution began, the 
request would have to wait ∑N

i=1 distribution_timei 
seconds until 1 was scheduled again.  A peer could 
potentially distribute multiple pieces of content 

simultaneously, but the time to complete each 
distribution is still restricted by the peer's outgoing 
bandwidth.  Additionally, we suggest that by 
enabling users to browse a schedule of content, 
requests are likely to be influenced by content 
already scheduled. 
     Another observation of Figure 11 is that the spikes 
at wait times 0 (not shown for clarity of presentation), 
61, and 301 indicate that the largest number of 
requests wait for the amount of time specified by the 
delay of the aggregation scheme. This is because the 
system is somewhat lightly loaded and relatively few 
requests arrive between the time that a distribution is 
scheduled and when it begins.  While a longer delay 
implies a longer average wait time, the tradeoff is that 
a longer delay scheme utilizes fewer resources at the 
serving peer.   
     Finally, the difference between straightforward 
aggregation and a digital fountain-style aggregation 
scheme is minimal.  This is primarily because we 
delay any new distributions by 1 minute and because 
we restrict the number of times the distribution can be 
extended to one.  In fact, since our serving peer in this 
experiment stores only one piece of data, in an 
unrestricted digital fountain scenario we would 
achieve 0 wait time for all requests.  If a peer was 
stable, likely to remain available, and stored only one 
or a few pieces of popular content, using an 
unrestricted digital fountain scheme would be the 
best choice. 
 

 



 
Figure 12: Number of requests serviced with each distribution at 40 requests per second. 

 
Figure 12 illustrates the number of peers serviced for 
each distribution scheduled during the 480 minute 
run using the same parameters used for the 
experiment shown in Figure 11.  We omit the results 
of the DF 1 1 scheme for presentation since the 
results were similar to the AGG 1 scheme.  We also 
omit the results of FCFS because it always services 
one request. 
     We notice that the aggregation schemes manage 
to service up to 30 requests per distribution.  We also 
notice that the AGG 5 scheme never services less 
than 7 requests per stream while the AGG 1 scheme 
often services fewer.  Because AGG 5 consistently 
services more requests than the lower delay scheme, 
fewer distributions are required.  This is simply 

because more requests are aggregated prior to the 
beginning of a given distribution.  What this implies 
is that there is a tradeoff between the resources used 
at the serving peer and the wait time experienced by 
the client.  By incurring an average wait time penalty 
of 33 seconds with the AGG 5 scheme, we gain 
roughly a 25% resource savings at the serving peer.  
Our final observation is that by using aggregation, we 
gain an advantage in terms of disk space required 
across the network.  For the FCFS scheme to achieve 
the same performance of the AGG 5 scheme, content 
would have to be replicated up to 30 times throughout 
the network. 
 

 



 
Figure 13: Wait time for each request serviced with load surge. 

 
In Figure 13 we store an unpopular piece of content on 
the serving peer and demonstrate a spike in load from 
40 to 90 requests per second.  The figure illustrates 
the wait time experienced under these conditions.  
While wait time with the FCFS scheme continues to 
grow, even without the load spike, wait time using 
the aggregation scheme remains stable over all 
requests.  Such behavior is especially important when 
a new, popular piece of content is introduced into the 
peer network.  In the best case FCFS scheme, 
distributing a single piece of content throughout the 
entire network would be logarithmic with respect to 
the number of peers.  Using aggregation, the same 
distribution occurs in constant time. 
 
 
5.4 Discussion 
The one-to-many nature of Pixie distribution 
provides a number of additional scalability 
properties.  Pixie dramatically reduces the wait time 
experienced by client peers while reducing the load 
on the serving peer.  A peer in a standard, first come, 
first served scheme can wait over 50 times longer 
between the request for content, and the start of a 
distribution than a Pixie peer.  Additionally, the 
serving peer load can be reduced by up to 30 times by 
servicing multiple peers in parallel.   Finally, Pixie is 
virtually unaffected by an increase in load across the 
peer network.  It gracefully handles heavy load as 
well as load spikes whereas the first come, first 
served case becomes very unstable in both situations.  
Previous experiments [3] have also shown that Pixie 
performs well under varied network load and peer 
characteristics as well. 
 

6 Reliability and Fault Handling 
The dynamic nature of peer networks makes reliable 
and fault tolerant peer-based applications particularly 
challenging to implement.  A peer that is distributing 
or simply routing content may go offline at any time.  
In this section, we outline how Pixie tolerates serving 
peer faults and discuss the performance impacts of 
our fault handling scheme. 
 
 
6.1 Serving Peer Fault Handling 
By using a digital fountain scheme or straightforward 
reliable multicast scheme for reliability either over a 
native or application-layer multicast infrastructure 
we can ensure that data lost between the serving peer 
and the receiving peer are eventually recovered.  
However, we have not yet addressed how we recover 
from serving peer faults.  The most critical failure 
case occurs when a serving peer fails during or before 
its scheduled distribution.  Failure can be the result of 
system failure, network failure, or a user can simply 
choose to take the peer offline, the so-called 
freeriders problem.  We make the assumption that 
peers may go offline without any prior notification.  
Therefore, we must develop a strategy for 
rescheduling distributions that have not completed. 
     First, let us consider the basic (e.g., no failure) 
case when a user does not find an item of interest in 
the schedule and must search for a piece of content 
and schedule a distribution.   
 
1. An interested peer searches for a piece of 

content. 
2. Once the piece of content has been found, the 

requesting peer contacts the serving peer and 
requests a distribution be scheduled. 



3. An updateSchedule message is propagated to all 
peers in the network. 

4. At distribution time, the content is distributed to 
all interested peers. 

 
In the event that the serving peer fails, there must be a 
strategy for detecting the failure and rescheduling the 
distribution.  For the purposes of this work, we 
assume that a serving peer has failed if a receiving 
peer expects to receive content from the serving peer, 
but has not received data for some timeout period.  
The determination of this timeout period is dependent 
on many factors, including the underlying data 
distribution protocol.  Moreover, more advanced 
schemes for detecting failures are also possible.  
However, more sophisticated schemes are beyond the 
scope of this work.   
     Once a fault is detected, the distribution must be 
rescheduled.  To support our fault recovery 
algorithm, we must modify the basic search and 
schedule case as follows: 
 
1. An interested peer searches for a piece of 

content. 
2. Once the piece of content has been found, the 

requesting peer contacts the serving peer and 
requests a distribution be scheduled. 

3. Along with the request, the requesting peer 
provides a list of all potential serving peers in the 
network that initially responded to the search 
request. 

4. An updateSchedule message that includes the 
complete list of potential serving peers is 
propagated to all peers in the network. 

5. At distribution time, the content is distributed to 
all interested peers. 

 
Using the cached search results, the general fault 
recovery algorithm is as follows: 
 
if the serving peer fails 
  wait a random backoff period 
  if the distribution has not resumed 
    do  
      select an alternate serving peer from the cached  

 search results 
    while the selected peer is not reachable 
    request a new distribution from the selected peer 
  on the same channel 
    immediately, the new serving peer begins  

distribution to all peers waiting for the 
distribution 

 
This strategy reschedules a failed distribution in an 
efficient manner.  First, the random backoff period 
helps to avoid the case that multiple receiving peers 

simultaneously detect a fault and attempt to 
reschedule a distribution.  The first peer to reach the 
end of the backoff period will reschedule the 
distribution and the remaining peers can take 
advantage of the rescheduled distribution.  Moreover, 
using the same channel (e.g., multicast group 
address) for the rescheduled distribution avoids the 
overhead of sending out an additional 
updateSchedule message.  Only those peers that are 
joined in the current distribution are affected.  
Finally, because the original search responses are 
cached in the schedule, there is no need to burden the 
network with a new search.   
     More advanced and efficient schemes for 
handling faults and ensuring reliability are also 
possible.  For example, assuming the use of a digital 
fountain-style scheme, if multiple peers store the 
same content, they can be scheduled to distribute the 
same file simultaneously on the same channel.  If 
neither serving peer fails, those receiving peers with a 
high bandwidth connection can potentially receive 
the file in half the time.  Also, if one serving peer 
fails, another peer is already in the process of 
distributing the content.  Moreover, if we used a more 
reliable group management protocol such as Chord, 
we could detect the failure of a peer and 
automatically reschedule a distribution at the 
infrastructure layer.     
 
 
6.2 Performance Analysis 
     Our serving peer fault handling scheme incurs 
minimal cost.  The goal of this paper is to compare 
Pixie against a typical P2P file sharing application 
such as Gnutella or Napster.  Both of these 
applications leave fault tolerance up to the user by 
requiring that the user resubmit search queries or 
download requests in the case of failure.  Comparing 
Pixie’s fault tolerance mechanisms to these typical 
fault tolerance mechanisms would be an unfair 
comparison.  In this section, we discuss the 
comparison between Pixie in a faulty network and 
Pixie in a stable network.  However, it is worth noting 
that many of the performance penalties discussed 
also apply to most if not all of the P2P file sharing 
systems which have been deployed to date.  Those 
that do not are penalties associated with metrics 
unique to our system. 
     First, the metrics we evaluate in Section 4 and 
Section 5 are not directly affected by serving peer 
failure.  Found remains the same even if peers fail 
because the schedule is kept locally.  Though, it is 
possible that a peer has stale information in its 
schedule.  In other words, a peer, p1, could have in its 
schedule an entry which denotes that another peer, 



p2, has a piece of content even if p2 has failed.   The 
penalty is simply that p1 may have to reissue a 
schedule request if it makes the initial request to a 
failed peer.   
     Number of search messages processed is also 
likely to remain the same even if peers fail.  The only 
time it would increase with increased peer failure 
would be when all serving peers associated with a 
particular piece of content in the schedule failed 
between the time the corresponding updateSchedule 
message was applied to the schedule and when it was 
removed.   
     The updateSchedule Message overhead would 
be modestly larger because our fault tolerance 
scheme requires that the updateSchedule message 
contain an entry for all peers that have the advertised 
piece of content.  This will add a few Kilobytes to the 
updateSchedule message size as well as to the size of 
the schedule.  However, we do not believe this will 
impact the performance of the system.  
     Wait time will be unaffected unless a serving peer 
fails before it even begins to deliver content.  In this 
case, there will be an additional delay associated with 
contacting an alternate serving peer and rescheduling 
the distribution.  Because the schedule has 
information about all potential serving peers, the 
delay will not include any search time. 
      Number serviced per distribution will only 
improve in a faulty network.  If there are fewer 
serving peers to service requests, more requests will 
be aggregated and serviced simultaneously using our 
one-to-many delivery scheme.   
     In addition, if we employ the proposed digital 
fountain style scheme for reliability, there is a small 
penalty associated with using Tornado codes.  Some 
redundant information is introduced and the impact is 
that the number of bytes a receiving peer must 
receive in order to reconstruct the original file is 
5-10% greater [20] if we assume no serving peer 
failures.   However, the benefit of using Tornado 
codes is that if a serving peer does fail, a receiving 
peer can make use of the content it has already 
received rather than starting again from the 
beginning.  If most failures occur after a serving peer 
has delivered at least 10% of a data file, our scheme 
will outperform typical P2P content delivery. 
      Finally, there is a delay associated with 
rescheduling an in-progress distribution.  If a serving 
peer fails, one of the receiving peers must request a 
new distribution from another serving peer with the 
same content and wait for that serving peer to begin 
delivery.  However, because each peer has a cache of 
information about where content is available, the 
receiving peer which requests the new distribution 
does not need to perform another search of the 

network.  Additionally, unlike typical P2P file 
sharing systems, we do not rely on the user to initiate 
the new delivery.    

 
 

7 Concluding Remarks 
Pixie is an architecture designed to improve data 
location and content distribution in peer-to-peer 
networks.  In Pixie, peer requests for content are 
aggregated.  A schedule of distribution times is 
propagated throughout the network, and distribution 
is done using a one-to-many distribution scheme.  
Thus, a virtually limitless number of peers may take 
advantage of the same distribution. 
     In this work, we expand our previous work in two 
ways.  First, we examine Pixie's integration of 
well-known reliable distribution protocols and 
propose an algorithm for handling serving peer 
faults.  Second, we evaluate the tradeoff between the 
overhead associated with maintaining the schedule 
and the search savings gained by using the schedule 
abstraction.  Pixie can eliminate search overhead by 
nearly 60% and, even with the schedule maintenance 
overhead, outperforms a straightforward flooding 
search scheme.  Additionally, we summarize our 
previous results which indicate that Pixie can greatly 
reduce client wait time and server resource usage. 
     Pixie also introduces a number of interesting areas 
for future research.  First, we would like to integrate 
many-to-many content distribution into the Pixie 
architecture.  However, there are still a number of 
unsolved challenges associated with many-to-many 
content distribution such as which potential servers 
should be selected to distribute content.  We are also 
interested in evaluating Pixie's behavior in an 
unreliable network.  We anticipate that, using Pixie, it 
is likely that more peers will ultimately be serviced 
under unreliable conditions. 
     Peer content exchange is becoming more popular 
and encompasses an increasing number of 
applications.  The content being exchanged is 
becoming larger while the peer devices are becoming 
smaller.  One-to-one distribution in these scenarios is 
inefficient if not impossible.  Moreover, locating 
content in larger and more diverse networks is even 
more of a challenge.  Using Pixie, we can reduce the 
impact of these challenges and make content 
exchange more efficient. 
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