
Facilitating Robust Multicast Group Management

Avijit Sen Mazumder
Dept of Computer Science

UC-Santa Barbara
Santa Barbara, CA 93106

avijit@cs.ucsb.edu

Kevin Almeroth
Dept of Computer Science

UC-Santa Barbara
Santa Barbara, CA 93106

almeroth@cs.ucsb.edu

Kamil Sarac
Dept of Computer Science

Univ of Texas at Dallas
Richardson, TX 75083

ksarac@utdallas.edu

ABSTRACT
Multicast is a key service for many audio and video applications,
yet it continues to be a challenging Internet service to deploy. While
much attention has been given to a number of problems associated
with multicast, two closely related problems in particular have re-
ceived almost no attention. First, there is essentially no host sup-
port for dealing with the variety of ways to join a multicast group,
and second, there is a complete absence of group join success or
failure feedback from the network. The lack of a straightforward
way to robustly join a multicast group and then to know whether
the join has been successful is possibly the biggest limitation for
multicast application developers today. In this study we develop a
robust solution to determine the existence and nature of multicast
service in the network. We consider two options: (1) the use of ex-
isting protocol features to extract the required information, and (2)
the introduction of new protocol extensions to directly query the
network. Our results indicate that while a truly robust group join
is possible only when there is network support, these additional
changes are difficult to deploy. Our evaluation implements a proof-
of-concept prototype to determine the existence and nature of the
multicast service in the network.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Protocols–
Protocol Architecture

General Terms
Reliability, Performance, Management

Keywords
multicast, group management, debugging, protocol feedback

1. INTRODUCTION
IP multicast provides both scalable and bandwidth efficient mech-

anisms to support multi-receiver networking applications [1]. The
commercial deployment of multicast, however, has been slower

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’05, June 13–14, 2005, Stevenson, Washington, USA.
Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

than expected [6]. Some of the reasons for this slowness include:
difficulties with group management, challenges with efficient and
practical multicast address allocation, security vulnerabilities, and
a lack of multicast network management tools. In this paper we
focus on addressing the issues of multicast group management and
robust group join problems.

In the original IP multicast service model, referred to as Any
Source Multicast (ASM), sources send their data to a multicast
group defined by a Class D IP address. Receivers join the group
to become members and receive multicast data sent to the group
address. More recently, a simplified multicast service model called
Source Specific Multicast (SSM) [2] has been introduced. In SSM,
multicast groups are referred to as channels where a channel is
identified by the IP address of the transmitting host and the mul-
ticast group address. In both cases, the underlying network builds
multicast distribution trees connecting sources and receivers. The
process by which a receiver is added to the multicast tree is called
a group-join. A successful group-join results in proper data recep-
tion at the receiver site. If a group-join fails, however, the receiver
cannot join the multicast tree and does not receive any data. The
robustness of group-joins, therefore, determines the robustness of
the overall multicast service in the Internet.

IP multicast is designed to provide a simple interface for appli-
cations to join and receive data from a multicast group. The join
process is straightforward and requires a receiver to open a socket
and set a socket option [9]. No acknowledgment is provided to con-
firm the success of a group-join. This simplicity makes it easy to
join a group, but creates problems in the case of failures. If a join
is sent but no content is received, the receiver cannot really be sure
about the reason for the failure. It may be that the source is cur-
rently inactive or it may be that the join request failed. Within the
current IP multicast service architecture, the receiver does not have
a mechanism to learn the reason why multicast content was not re-
ceived. In order to achieve a robust group-join, the user application
must be able to determine whether a group join has succeeded or
not.

The current best effort approach to joining a multicast group
is fragile due to a number of problems that include protocol mis-
match, version mismatch, and partial deployment. Other than suc-
cessfully receiving content from a source, there is no way that an
application can determine what might have happened to its join re-
quest. The effect of this ambiguity is twofold. First, an application
never knows whether there is even a problem. And if there is a
problem, there is no meaningful information about the cause. Sec-
ond, in the absence of proper feedback, the application cannot eas-
ily determine when to fall back to a different mechanism to receive
the content, e.g., to use Automatic Multicast Tunneling (AMT) [13]
or an Application Layer Multicast (ALM) solution [15].

In this paper, we propose two solutions for making group joins
more robust. The first is to gather information about the nature of
multicast support using existing protocol mechanisms. In this ap-
proach, we limit ourselves to existing protocol messages to deter-
mine the availability and nature of the multicast service supported
by the underlying network. Because the existing protocols were
not designed to provide feedback, the result provides less than full
knowledge about what the network supports. However, the gath-
ered information in combination with existing multicast debugging
techniques makes it possible to determine the availability of multi-
cast.

The second solution that we propose for making group joins
more robust involves the introduction of additional functionality to
collect network feedback about the fate of group-joins sent into the
network. While this approach requires modifications to the multi-
cast infrastructure, the result would help us achieve robust group-
joins and a more robust multicast architecture. In this way, a user
application would be notified at once about the failure of a join re-
quest. Additionally, optional information about the nature of the
failure could be delivered to the user. This information could in
turn be forwarded to a network administrator to assist in debugging.
While this solution provides complete feedback, the deployment of
the required modifications is a challenge. The tradeoff is either that
we have less-than-full knowledge about the join process or we have
full knowledge which necessitates making changes to the multicast
infrastructure.

As part of our contribution in this paper, we attempt to evaluate
the invasive solution (requiring modifications) as well as the non-
invasive solution (not requiring modifications) and their implemen-
tation complexities. For the non-invasive solution, we have imple-
mented a tool called the Multicast Detective. We also elaborate
on how non-invasive techniques can be integrated into a multime-
dia content application, e.g., Real Network’s Helix platform1. One
lesson learned from using our tools is that a point of failure located
far from the user application is harder to identify using non-invasive
means.

The remainder of this paper is organized as follows. In Sec-
tion 2 we provide the background and motivation for our study. In
Section 3 we describe our Multicast Detective solution. Section 4
elaborates on our implementation and evaluates the proposed archi-
tecture. The paper is concluded in Section 5.

2. BACKGROUND AND MOTIVATION
In the current IP multicast architecture, the multicast group join

process is initiated by a user application opening a socket and set-
ting a multicast-specific socket option. This apparent simplicity at
the application layer along with the lack of any join success/failure
feedback leave the application in a non-deterministic waiting state
without proper information about potential failures in the join pro-
cess. Hidden by this application-perceived simplicity is a multicast
group join function involving several steps. In this section we de-
scribe these steps, the different points of failure, and the problems
associated with the current group-join process.

Figure 1 shows the different components in the multicast group
join process. The two endpoints of a multicast tree are the user ap-
plication (#1 in Figure 1) and the source application (#6 in Figure
1). The user application interfaces with the host socket interface,
which in turn uses one of several multicast group management pro-
tocols. These include any of the three Internet Group Management
Protocol (IGMP) versions [7, 3] or either of the two Multicast Lis-
tener Discovery (MLD) protocol versions [5, 14]. The IP Stack

�

http://www.helixcommunity.org/

(#2 in Figure 1) will support some of these protocols, and through
these protocols, allow an application to join or leave a multicast
group dynamically. The first major challenge for the user applica-
tion is to determine the group membership protocols supported by
the Host IP Stack. This information is necessary for the applica-
tion to be able to use the proper socket options to join (and leave) a
multicast group.

The second challenge arises when the Host IP Stack sends a
membership report packet towards the first hop router. The mem-
bership report travels through one or more Switches (#3 in Figure 1)
on its way to the first hop router. If IGMP snooping [8] is enabled
on these switches, the specific protocol version of the membership
report becomes important. An IGMP snooping switch that under-
stands IGMPv2 may suppress IGMPv3 (and MLDv1 and MLDv2)
packets resulting in a lost group join request. In addition, until re-
cently, IGMP snooping was considered a protocol optimization and
there was no IETF standard for how a switch should handle group
membership messages. Only recently have researchers begun work
to solve this problem [8]. As a result, a large percentage of group-
join problems are because of incorrect switch operation.

Once the IGMP group membership report arrives at the First Hop
Router (#4 in Figure 1), it is interpreted according to the router’s
capability. As a result, different failure conditions may occur. A
“multicast unaware” router simply drops the membership message.
Similarly, an IGMPv2 enabled router ignores IGMPv3 member-
ship reports. And finally, problems can occur for the MLD family
of group membership protocols because the router may not under-
stand IPv6. Thus, even though a large number of problems are
possible, there is no mechanism for sending feedback to the Host
IP stack. Similarly, the user application will be unaware of any
problems and will likely simply wait for data to be delivered via
the open socket.

If no problems arise and the first hop router is already part of the
multicast distribution tree, the join request will complete success-
fully. Of course, the user application may continue to wait for data
if the source application does not happen to be transmitting. On
the other hand, if the first hop router is not yet part of the multicast
distribution tree, additional steps must be completed.

If the first hop router is not already part of the multicast distribu-
tion tree, it must graft itself onto the tree. In this process, routers
use multicast routing protocol(s) to establish and maintain a mul-
ticast forwarding tree between the source(s) and receiver(s) (#5
in Figure 1). In this study, we consider the current pre-dominant
multicast routing protocol called Protocol Independent Multicast-
Sparse Mode (PIM-SM) [4] for establishing the forwarding trees.
In PIM-SM, when an IGMP membership report is received, the
first hop router initiates a PIM-Join request towards the source or
a designated local router called the Rendezvous Point (RP). If the
PIM-Join request eventually reaches the source application’s edge
router or reaches an intermediate router with forwarding state for
the requested group, the router is successfully grafted into the mul-
ticast tree.

The third challenge concerns problems that arise related to PIM-
SM. Previous monitoring studies [11] have shown that while there
are “islands” of multicast connectivity, not every island is reachable
from every other island. In this case, a PIM-Join request destined to
a remote source may be dropped before reaching either the source
or an already-connected intermediate router. In addition, config-
uration problems, or a complete lack of multicast capability, can
cause PIM-Join requests to be mis-routed or dropped completely.

Given the numerous problems that can occur with the multicast
group join process, a user application waiting on a socket to deliver
data cannot be sure whether a lack of data is due to (1) silence of

Figure 1: The multicast group join process.

the source, or (2) any of the number of possible multicast proto-
col problems. These problems create the fourth challenge. Funda-
mentally, multicast signaling is implemented only among network
elements that do not have a feedback loop and without feedback
to user applications. Because Any Source Multicast (ASM) allows
any source to transmit to a multicast group address and does not
provide receivers a way of knowing the set of sources, it becomes
extremely difficult for a receiver to verify whether there are any ac-
tive sources and whether data is being delivered from every active
source.

The evolving nature of IP multicast in the Internet along with
the inherent disconnect between sources and receivers makes the
task of joining a multicast group quite difficult. To summarize, the
major problems associated with joining a group are: (1) a lack of
feedback to detect multicast support at the edge of the network, (2)
membership protocol message exchange failure between end hosts,
switches and routers, (3) multicast routing protocol errors, and (4)
a lack of application-layer coordination among group senders and
receivers.

The solution to these problems will likely include enhancing
an application’s knowledge of multicast service availability in the
network. At a minimum, a proactive, network-aware application
should at least be able to determine the multicast capabilities of the
network components within the scope of the local subnet. The ap-
plication can then avoid waiting on a futile join request when the
underlying network does not support multicast. In the first place, if
it can be determined quickly that multicast does not exist, an appli-
cation might then be able to use an alternative [15, 13].

Determining multicast capability of the underlying network is
not always easy. The different types of multicast service, namely
Any Source Multicast (ASM) and Source Specific Multicast (SSM)
make the determination complicated. For example, the network
could support ASM but not SSM; vice versa; both; or neither.
Given that there are numerous options, we believe there is an obvi-
ous need for an intelligent middleware to provide a unified interface
for seeking multicast content.

Several studies have been conducted to address the multicast het-
erogeneity problem [12, 10]. Swan et. al. propose a multicast
session layer called Aspen [12]. Aspen tries to simplify the Ap-

plication Programming Interface (API) for multicast by hiding the
details of whether the network uses ASM, SSM or some application
layer multicast protocol. Aspen allows users to specify session pa-
rameters which are used internally to build appropriate distribution
tree. Our proposed solution would be complementary to the Aspen
approach in that it would give deterministic feedback on whether
multicast is working. This determination is a key step for Aspen
in that it must try each alternative and determine that a failure has
occurred before trying the next alternative.

In the MAGNA [10] architecture, Mathew et. al. suggest a soft-
ware agent at the Presentation/Session layer to provide support for
streaming multimedia in heterogeneous environments. MAGNA is
a much broader platform that deals with a variety of network as
well as content issues. And while MAGNA identifies the need for
robust group management, the details of how this is accomplished
are not described. Our solution is again complementary and could
easily be included as part of the MAGNA architecture.

Both of these platforms could therefore benefit from a solution
that provides information about the multicast capabilities of the net-
work. Our proposed Multicast Detective would provide precisely
this necessary information.

3. THE MULTICAST DETECTIVE
The multicast group join process is fragile because there are mul-

tiple points of potential failure along the path between the user
application and the source. Our goal is to provide feedback on
whether this process seems to be working correctly. We propose
two different approaches to improve the robustness of the group
join process. Both approaches develop mechanisms to allow the
user application to detect and potentially identify the reason for a
join failure. The first approach attempts to do this without making
any changes to existing multicast infrastructure. The second ap-
proach leverages a set of proposed changes to existing protocols in
order to develop a feedback mechanism between the network and
applications.

Figure 2 depicts the generic architecture for our multicast capa-
bility detection tool, called the Multicast Detective. This tool ini-
tiates a series of protocol queries and infers the extent of multicast

Figure 2: The Multicast Detective architecture.

support based on the responses. The goal is to verify the functional
correctness of both individual protocols as well as the communica-
tion between different protocols. Treating individual components
separately helps to isolate problems into logical areas and facili-
tates in-depth investigation. The Multicast Detective begins by first
evaluating multicast support within the local LAN and then gradu-
ally expands the scope of diagnosis towards the source.

As Figure 2 shows, the Multicast Detective is developed using
a receiver-centric approach for diagnosis of multicast capability. It
performs three types of tests. In the first, it simply joins existing
multicast groups known to constantly source traffic (e.g., session
announcement protocol (SAP) group or the Multicast Grid Bea-
con group) to determine if multicast connectivity to at least some
sources exists. The second set of tests consists of issuing multicast
membership messages to test the capabilities of the host and the
LAN. The third set of tests consists of protocol messages to deter-
mine whether there is a multicast routing protocol running on the
first hop router and then whether there is multicast support beyond
the first hop.

There are two main components to verify multicast functionality:
(1) exercising multicast group join membership and routing proto-
col message exchange, and (2) testing multicast packet delivery.
The Multicast Detective uses both techniques to gather as much
information as possible about multicast operation. By exercising
multicast membership and routing protocols, the Multicast Detec-
tive directly evaluates the robustness of group join and tree man-
agement functions. The reception of multicast data can be used to
indirectly verify correctness and directly verifying the overall suc-
cess of the join process.

The techniques used by the Multicast Detective can be run as a
stand-alone tool or can be integrated into an intelligent, network-
aware application. In the next section we consider two implemen-
tations, one stand-alone and the other integrated into an existing
open-source content delivery system. The goal is to understand
whether the functionality of the Multicast Detective can be pack-
aged as a library such that future multicast application developers
can avoid knowing about the overly complex details of multicast
operation and instead are given a more robust multicast socket fa-
cility.

4. IMPLEMENTATION AND EVALUATION
In this section we present our work to gather information about

whether the multicast group join process is working correctly or
not. As mentioned previously, there are two main approaches to
provide this information: (1) using existing multicast protocol mes-

sages, and (2) introducing additions to existing protocols. In the
first instance, we leverage existing multicast network facilities to
determine whether group-joins are likely to succeed. For this case,
we have developed two slightly different implementations. First,
we have developed a stand-alone version of our solution called the
Multicast Detective, a tool similar to the Internet2 Detective2. Sec-
ond, we have integrated some of the Multicast Detective techniques
into an open source multimedia content delivery platform called
Helix. In our evaluation of these solutions, we have found both to
be most effective only within the local subnet of a group receiver. In
Section 4.3, we describe the limitations of our first two approaches
and propose a set of primitives/functions to existing protocols in or-
der to provide deterministic feedback to applications about whether
a specific group-join was successful.

4.1 The Multicast Detective
The Multicast Detective is a stand-alone tool that gathers infor-

mation about a network’s multicast capability using a host’s ex-
isting socket API. Since part of our solution requires creating and
sending several IGMP and ICMP messages into the network, the
Multicast Detective uses raw sockets for creating and communi-
cating these messages. The advantage of this approach is that it
does not have application-specific constraints. For example, we
can assume administrative privileges which are necessary to use
raw sockets. The membership (IGMP or MLD) and routing (PIM-
SM) protocols are the most critical components of the group join
process. An important feature is that the availability of raw sockets
helps us run different tests related to these protocols.

While the Multicast Detective can effectively determine if mul-
ticast exists, it does not directly make multicast application devel-
opment more robust. However, one option is to turn the Multicast
Detective into a library and have other applications execute it as a
stand-alone application. This would allow applications to know if
there is a problem while resolution of the problem is left to network
administrators. This is our second approach and is described in the
next section.

The initial version of the Multicast Detective is a command line
tool running on an IPv4-based Windows XP platform. The tool
runs a series of diagnostic queries to infer multicast network char-
acteristics within the local network. The following list describes
the series of diagnostic tests that are run by the Multicast Detective.
On the basis of the outcomes of these tests, the tool determines the
multicast capabilities available in the network.

�

http://detective.internet2.edu/

Step 1. The Multicast Detective, similar to the Internet2 Detec-
tive, joins the NLANR Multicast Beacon Group. The tool checks
to see if any data packets are received from the group. After re-
ceiving data from the group, the tool checks the IP address of the
source to make sure that the source and the receiver do not reside
in the same subnet and/or in the same domain. Because there are
almost always sources transmitting to this group, if no data packets
are received, we conclude that the group join failed. Data that has
been successfully received indicates that the membership protocol
is working in the local subnet and the routing protocol has worked
for at least some sources in the group. There is no guarantee how-
ever, that multicast is working for all sources sending to the group.

Step 2. The tool issues an SSM join with a known group and
source address by setting the proper socket options and then listen-
ing for data packets. Currently we use an Internet2 Multicast Work-
ing Group SSM source to serve as the target group. If the socket
API fails while setting the source specific option, we can conclude
that host IP stack does not support SSM. If the socket API call re-
turns successfully but we do not receive any data packets, we can
assume there is a problem somewhere beyond the host.

Step 3. The tool sends ICMP ping messages to the All-Multicast-
Routers and All-SSM-Routers group addresses and listens for re-
sponses. The results of Steps 2 and 3 determine the capability of
the host and network up to the first hop router. A successful ping re-
sponse from the All-Multicast-Router group indicates that the first
hop router is capable of accepting multicast membership requests
for ASM. Similarly a response to the All-SSM-Router group ping
demonstrates the router’s capability of accepting SSM membership
messages.

Step 4. In this step the Multicast Detective looks more closely at
the message exchanges for a group-join. The tool creates and sends
an IGMP join message followed by an IGMP leave message for an
arbitrary group address and then listens for a Group-Specific-Query
from the router. This technique not only ensures that IGMP pack-
ets can be exchanged seamlessly between the host and the first hop
router, but it also verifies that the membership protocol is operating
correctly. A Group-Specific-Query confirms that switches along
the path to the first hop router are not blocking group-join mes-
sages. However, one problem that can still arise is for switches on
the path to treat multicast packets as broadcast packets and deliver
the data to all switch ports. While not affecting the group mem-
ber’s ability to receive data, it might create congestion on switch
ports that never explicitly had a member of the multicast group.

Step 5. In order to test the multicast routing protocol, the tool
sends an ICMP ping message to the All-PIM-SM-Routers group
and listens for a response. It also constructs and sends a PIM Hello
message from the host pretending to be an PIM-SM enabled router.
A ping response verifies that the first hop router is listening to the
All-PIM-SM-Routers group. In addition, if the tool receives a PIM
Hello response, we can conclude that PIM-SM at the router is op-
erational and active for the interface on which the host resides. The
earlier version of PIM-SM specifies that a PIM Hello response must
contain an RP-set which includes the location of the domain’s RP.
If this information is returned, it is a good indication that multicast
is working in at least the local domain.

4.2 Integrated Client–Helix Player
Helix is a state-of-the-art open-source multimedia content deliv-

ery platform lead by Real Networks. The challenge with imple-
menting the Multicast Detective techniques in Helix is that Helix is
not able to use low-level network probing techniques that require
administrative privileges. This limitation severely constrains the
number of possible network diagnostic steps that can be integrated

directly into the Helix player. One option is to run only the set of
Multicast Detective diagnostics during installation of the player to
determine multicast network capabilities. This approach, however,
is sub-optimal, given that network conditions could and often do
change. Another alternative is that when the user application fails
to receive content, the Multicast Detective could be started in paral-
lel and diagnostic information then collected through a Helix-based
API.

Assuming neither of these choices is possible, a subset of tech-
niques employed by the Multicast Detective could be integrated
into a Helix client and run without administrative privileges or ac-
cess to raw sockets:

1. As a user application, the Helix player can join the Multicast
Beacon Group and listen for data packets as described earlier.

2. The Helix player can also join other groups in a process sim-
ilar to joining the multicast beacon group. The application
could join the Simple Network Time Protocol (SNTP) group
or the the Session Announcement Protocol (SAP) group and
listens for data packets.

3. The player can determine whether the host IP stack supports
IGMPv3 by attempting to set the source specific join option
and observing the result. In this way, the player can deter-
mine the availability of SSM support in at least the host IP
stack.

The Multicast Detective provides a comprehensive way to gather
information about multicast operation in the first hop and beyond.
This information could help user applications understand what kind
of multicast support exists. On the other hand, the Multicast De-
tective falls short in terms of locating and isolating potential mul-
ticast problems if the problems occur beyond the first hop router.
While the Multicast Detective can be used to detect the existence
of multicast support, it cannot be used as a feedback mechanism
for a specific group-join attempt. Such feedback is critical to truly
improve the robustness of the group join process.

4.3 Multicast Infrastructure Changes
We believe that some of the limitations of the Multicast Detec-

tive can be overcome by introducing changes to existing multicast
protocols. The main goal of these changes is to improve the robust-
ness of group joins by including necessary functionality as part of
the multicast protocols themselves. We propose a set of changes in
membership and routing protocols to improve the robustness of the
join process:

Group Join Feedback. A group membership acknowledgment
(IGMP-ACK and MLD-ACK) message would help to complete the
feedback loop between the application and first hop router. A group
membership acknowledgment issued by the designated multicast
router in response to unsolicited membership reports would im-
prove the robustness for host-to-router communication at receiver
sites.

Group Membership-Routing Protocol Feedback. A handshake
mechanism between IGMP/MLD and PIM-SM would allow any
PIM-SM-related problems to be propagated back to the joining host
through the group join feedback message. For example, if the first
hop router had no route to the source address or no RP was config-
ured, this information could be communicated back to the host as a
join failure.

Group Membership Status Query. Another solution would be
to create an IGMP/MLD Join-Status query/response mechanism.

The receiver host could use the Join-Status query to learn the re-
sult of a join message. The first hop router would consult the for-
warding state entry for the indicated group and send a Join-Status
response message back to the querier. This solution would require
multicast forwarding state to include a new field to indicate the re-
sult of the join request.

PIM-SM Per-Hop Join Acknowledgments. To improve the ro-
bustness of PIM-SM, the join request message could be acknowl-
edged at each hop. After the new forwarding path successfully
grafts to the existing forwarding tree (or reaches the source of the
tree), a PIM-Join ACK message would be forwarded downstream
to the first hop router. For a failure situation, this message could be
similar to an ICMP host/network unreachable error.

Support for Automatic Tunneling. The network can support
auto tunneling of multicast traffic using traditional unicast commu-
nication from the edge of the multicast island to the receiver [13].

Receiver-to-Source Signaling. This modification would not nec-
essarily require a change in the multicast infrastructure, but would
require a change in sources and receivers. A simple source receiver
signaling protocol could be developed for direct contact between a
receiver and a transmitting source. In this way, the receiver would
be able to verify that packets were indeed being generated by the
source. If the receiver is not receiving packets, it could use an al-
ternate means of delivery.

5. CONCLUSIONS AND FUTURE WORK
We have in our work addressed one of the most important prob-

lems with multicast: determining the existence of multicast support
within the network and identifying ways to make the group join
process more robust. Achieving robust multicast group joins with-
out changes in the network or socket API is virtually impossible.
Without changes, the best we can hope to gain is limited knowl-
edge about whether or not problems exist along the join path. Even
this small bit of information is useful for improving the robustness
of the multicast join process. There is more work to be done. An
eventual goal for multicast should be a robust solution that simply
returns an error via the socket API if any part of the join is un-
successful. While this solution would require significant changes
within the network architecture, it is an important requirement for
making multicast truly usable.

6. REFERENCES
[1] K. Almeroth. The evolution of multicast: From the MBone

to inter-domain multicast to Internet2 deployment. IEEE
Network, 14(1):10–20, January/February 2000.

[2] S. Bhattacharyya. An overview of source-specific multicast
(SSM). Internet Engineering Task Force (IETF), RFC 3569,
July 2003.

[3] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and
A. Thyagarajan. Internet group management protocol,
version 3. Internet Engineering Task Force (IETF), RFC
3376, October 2002.

[4] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, G. Liu, and
L. Wei. PIM architecture for wide-area multicast routing.
IEEE/ACM Transactions on Networking, pages 153–162,
April 1996.

[5] S. Deering, W. Fenner, and B. Haberman. Multicast Listener
Discovery (MLD) for IPv6. Internet Engineering Task Force
(IETF), RFC 2710, October 1999.

[6] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen.
Deployment issues for the IP multicast service and

architecture. IEEE Network, 14(1):78–88, January/February
2000.

[7] W. Fenner. Internet group management protocol, version 2.
Internet Engineering Task Force (IETF), RFC 2236,
November 1997.

[8] F. S. M. Christensen, K. Kimball. Considerations for IGMP
and MLD Snooping Switches. Internet Engineering Task
Force (IETF), Internet Draft, (work in progress), February
2005.

[9] D. Makofske and K. Almeroth. Multicast Socket Practical
Guide For Programmers. Morgan Kaufmann, New York,
2003.

[10] R. Mathew. Providing seamless access to multimedia content
in heterogeneous environment. Master’s thesis, Dept of
Computer Science, University of California, Santa Barbara,
September 2004.

[11] K. Sarac and K. Almeroth. Application layer reachability
monitoring for ip multicast. Elsevier Computer Networks
Journal, 48(2), June 2005.

[12] A. Swan and L. Rowe. Aspen: A multicast session layer. In
Open Mash Consortium, March 2004.

[13] D. Thaler, M. Talwar, A. Aggarwal, V. L., and P. T.
Automatic ip multicast without explicit tunnels (AMT).
Internet Engineering Task Force (IETF), Internet Draft,
(work in progress), February 2005.

[14] R. Vida and L. Costa. Multicast Listener Discovery Version 2
(MLDv2) for IPv6. Internet Engineering Task Force (IETF),
RFC 3810, June 2004.

[15] S. S. Y.-H. Chu, S. Rao and H. Zhang. Enabling
conferencing applications on the internet using an overlay
multicast architecture. In Proceedings of ACM SIGCOMM,
San Diego, California, August 2001.

