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ABSTRACT
There exists a huge demand for multimedia goods and services in
the Internet. Currently available bandwidth speeds can support sale
of downloadable content like CDs, e-books, etc. as well as services
like video-on-demand. In the future, such services will be prevalent
in the Internet. Since costs are typically fixed, maximizing revenue
can maximize profits. A primary determinant of revenue in such e-
content markets is how much value the customers associate with the
content. Though marketing surveys are useful, they cannot adapt to
the dynamic nature of the Internet market. In this work, we examine
how to learn customer valuations in close to real-time. Our contri-
butions in this paper are threefold: (1) we develop a probabilistic
model to describe customer behavior, (2) we develop a framework
for pricing e-content based on basic economic principles, and (3)
we propose a price discovering algorithm that learns customer be-
havior parameters and suggests prices to an e-content provider. We
validate our algorithm using simulations. Our simulations indicate
that our algorithm generates revenue close to the maximum expec-
tation. Further, they also indicate that the algorithm is robust to
transient customer behavior.

1. INTRODUCTION
The Internet is seeing an explosive growth in commercial activ-

ities, especially in content delivery services. The challenge is to
envision realistic scenarios where customers can download music
or movies for a price. For instance, Blockbuster could enter into an
arrangement with the local cable modem or DSL services provider
for on-demand movie rentals or music-video sales. Another ex-
ample is how e-Books are being proposed as a viable alternative
to paper books. In such markets, the content provider can maxi-
mize revenue by charging the customers as high an amount as they
are willing to pay. The key to increasing revenues therefore lies in
learning how much the customers are willing to pay for the content.

From the customer perspective, price affects whether to purchase
the product or service. The customer can accept or reject a price
based on his/her capacity to pay and willingness to do so. Choos-
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ing the right price is therefore of great importance to maximize
revenue. There are not many ways to choose the right price. Usu-
ally, content providers use years of experience with customers to
guide their choice of prices. However, such approaches have some
inadequacies in an Internet setting. First, these approaches are typi-
cally regional. Surveys can find customer valuations for a service in
some geographical region. Such region based characterization may
not be helpful in the Internet. For instance, it is not inconceivable
that in the future, during prime-time, when servers in Europe are
overloaded, customers in Europe can watch movies streamed by a
content provider in North America. Prices based on North Ameri-
can market surveys (or based on experience with North American
customers) would then severely affect revenues. Second, customer
behavior can be time varying. A sudden news event can cause im-
mediate changes in the Internet market. Experience-based prices
and surveys cannot keep up with such dynamic behavior.

This paper develops an analytical framework for discovering the
right price in an Internet setting. We answer two questions– (1)
can the content provider learn customer valuations online? and (2)
can the content provider adapt to changes in customer behavior?
A simple approach to learn customer valuations is to charge differ-
ent prices and observe how customers react. And by continuously
observing how customers react, one can track changes in behavior.
However, experimenting with different prices can result in loss of
revenue. The challenge is to learn customer behavior with mini-
mal loss in revenue due to experimentation. One can minimize loss
in revenue if data acquired by making a small number of obser-
vations can be extrapolated based on a formal model of customer
behavior. To this end, we develop a parameterized customer behav-
ior model that takes into account how much a customer can spend
as well as how willing she is to do so. We then develop an al-
gorithm that ascertains these parameters online and then uses our
analytical framework to suggest prices to the content provider. We
perform simulations to validate our algorithm. We compare the
revenue generated by our algorithm with the maximum expectation
predicted by our analytical framework. We also compare the rev-
enue generated by our algorithm with that generated using a simple
pricing scheme. We simulate a variety of scenarios where customer
behavior changes dynamically. The simulation results indicate that
our algorithm is robust to such scenarios. Our work is based on a
video-on-demand server, but it is sufficiently general to be applied
to other forms of content and services in the Internet.

The rest of the paper is organized as follows. We describe our
basic system model used in this paper in Section 2. We formulate
the maximum expectation of revenue as a constrained optimization



problem in Section 3. In Section 4, we develop a price discovering
algorithm that tracks customer behavior and suggests the price for
the content. We perform simulations to validate and stress-test our
algorithm in Section 5. We discuss related and motivational work
in Section 6. We conclude the paper in Section 7.

2. SYSTEM AND CUSTOMER BEHAVIOR
MODELS

We consider a system where requests are satisfied if resources
are available and the customer agrees to pay the quoted price. Re-
sources are modeled as logical channels. Every request which is
satisfied occupies a channel for some finite amount of time. Re-
quests are processed on a First-Come-First-Served basis. If there
are no channels available when a request arrives, then the request is
rejected. For a video-on-demand server we can think of the number
of channels as the number of movies that can be served simultane-
ously. In this paper we do not focus on how the channel is allocated
or how an allocated channel is managed. We mainly focus on the
interaction between the system and the customer before a channel
is allocated.

In our model, we assume that once the content provider makes
the initial infrastructural investment, there are either negligible or
fixed costs in maintaining the resources (caches, servers, bandwidth
etc.), i.e., there are no additional costs based on number of requests
served. This is a reasonable assumption because servers incur fixed
costs and bandwidth is typically bought at a flat rate. If mainte-
nance costs are negligible or fixed, profit maximization is equiv-
alent to revenue maximization. We also assume that there is no
distinction or classification in the type of service, i.e., all customers
are provided the same quality of the product. We also assume that
all the products/services being sold are similar. This implies that
the content provider is selling only e-books or only CDs or a VoD
service and not a combination of these. A content-provider who de-
cides to combine these activities can pre-allocate some channels to
each category. Our analysis would then hold true for each of these
categories independently. Though our ultimate objective is develop
learning algorithms for a competitve market, in this paper, we re-
strict ourselves to a monopolistic market where there is a single
content provider providing the service.

Economic theory has established that there are a large number
of customers with a small income and a very small number of cus-
tomers with a very large income[2]. It is reasonable to assume that
customers' capacities to spend will follow a similar behavior. Cur-
rently, two probability distribution models, Pareto and log-normal,
are used to represent the distribution of incomes. In this paper, we
use the Pareto distribution to represent the capacity to spend. Every
customer has the capacity to pay based on a Pareto distribution with
two parameters–shape � and scale

�
. All customers have capacities

at least as large as
�
. The shape � determines how the capacities

are distributed. The larger the value of � , the fewer the people with
a very large capacity to pay. The Pareto density function is defined
as �������
	�������� ����� , for ��� � .

Figure 1 illustrates the Pareto density function for different val-
ues of shape � , and scale

� � 50. Let us consider an illustrative
example to understand the Pareto distribution of capacities. Con-
sider a video-on-demand server. We can expect all customers to
have a capacity to pay at least some amount for the movie. We call
the largest such amount that can be paid by all the customers as the
scale of the distribution of their capacities and denote it as

�
. We

would expect most of the customers to be able to pay only about
this amount. There will be very few customers who can pay a sig-
nificantly more than the scale. This information is captured by the

shape of the distribution, which we denote as � . The greater the
value of � , the fewer the customers who can pay a lot more than�
. For systems like video-on-demand servers, we would expect the

shape to be very large. Another interpretation of the capacity to
spend is to assume that it is the maximum valuation for that prod-
uct. For common products, like movies or CDs, it is very likely
that most people will have a similar maximum valuation and very
few may have a higher maximum valuation. The Pareto distribution
captures this behavior. Henceforth, we shall use the terms capacity
to pay and maximum valuation interchangeably.

Even though customers can spend (i.e., have a maximum valua-
tion of the product), they may not be willing to do so 1. For instance,
even though a customer might value watching a movie at $10, how
much he/she actually pays depends on the movie and other intan-
gibles like “mood”. To adequately describe the willingness of cus-
tomers to pay, we define a family of probability functions. Consider
an arbitrary customer with capacity � . We denote his/her decision
to purchase the service by the random variable � which can take
two values, � for accept and � for reject. The probability that the
customer accepts the price � , denoted by �! ��"�#�%$&�(' depends
on his/her capacity (or maximum valuation) � , and the price � . In
general, for rational customers, we would expect this probability to
decrease with price and increase with capacity. In this paper, we
work with a simple model, where �! ��)�*�+$,�-' is defined as
shown in Equation 1.

�! ��.�/�!$��-'0�
1 �(24365798�:<;=�!>?�?>@��A;B�DCD� (1)

The parameter E in Equation 1 is a product-specific variable that
represents how willing a customer is to spend money. By varying
the parameter E , we can make the willingness as elastic as desired.
The higher the value of E , the more willing the customer is to spend
money on that product. We show willingness models for a customer
having capacity 100, with E values 0.5, 1, 2, 5 and 10 respectively in
Figure 1. As can be seen, the model with E = �F� makes the customer
much more willing to spend money than in the case of the other
models. In fact, as E increases, the willingness begins to resemble
a “step-function”, i.e., the customer is willing to pay as much as
his/her capacity to pay. In particular, when E is infinity, the model
reduces to a quasi-linear utility function model, where customers
will purchase at any price below their maximum valuation. Since
different customers will have different degrees of willingness, we
shall assume that for each product, the willingness parameter E of
the customers is a random variable. While in reality, the customers'
willingness can be totally arbitrary, to make our analysis tractable,
we shall assume that it is exponentially distributed. Let the mean
elasticity of willingness be EHG . Then, the probability density of E at� , denoted by �JIK���
	 , is given by �JIK���
	L� �

:NM�OQPSR
T M for ���D�

3. EXPECTATIONS OF REVENUE AND AC-
CEPTANCE

�

Typically, the willingness of customers is modeled in terms of
utility functions. This presupposes that the customer has associated
a value with the good or service and that this value is known. In
reality, the actual value a customer associates with the product is
difficult to determine. We therefore propose a model where the
customer probabilistically reacts to the quoted price.
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Figure 1: Pareto Distribution and Probabilistic User Willing-
ness

In this section, we discuss the dynamics of the customer behavior
model and system resource constraints and how together they affect
revenue. We state the following theorem without proof2.

THEOREM 1. Consider product ��� . Let customer willingness to
pay for ��� be represented by Equation 1. For a Pareto distribution
of customer capacities, with shape � and scale

�
, �/� � , � C � ,

and exponentially distributed elasticity of willingness with meanE � G , the expectation of the variable � � given price � � , ��� � � $�� ��� is
as follows. In Equation 2, 	 �
� ;���	 refers to the incomplete gamma

function ������� R� �����
� ���

��� � � $J� ��� �
������ �����
� 2 :� M O �

T  M 3 �5  8  	 3 ��; :� M"! �$#&% 3 �5  8
8 ;� >D� � > �
3 �5  8  3 �-2 :' M O �

T  M 	 3 ��; :� M 8
8 ; � � C
�
(2)

We now formulate an expression for the revenue. Let ( be the
total number of products and )�� the arrival rate of requests for prod-
uct � � . The fraction of customers who accept the quoted price � �
for ��� per unit time is )��*��� �+�K$ �,� � . Therefore the expected rev-
enue earned on � � per unit time is given by ) � � � ��� � � $Q� ��� . The
expectation of revenue per unit time for all the products together is:- �/.10�&2 � ) � � � ��� � � $�� ���

One can show that there exists a maximum for the equation de-
fined above. To do so we observe that each term in the expression
for revenue is dependent only on one variable. Therefore, if each of
the individual terms can be maximized, the sum can also be maxi-
mized. Moreover, the 354�6 term is a concave function3 of the variable�,� . Therefore each term can be maximized and any local maxima is
also a global maxima. Since the revenue function is well behaved,
a good numerical package can be used to determine the optimal
prices.

Though the optimal prices can be ascertained through numerical
methods, resource constraints may prevent achieving the maximum
expectation of revenue. To illustrate this phenomenon, let us con-
sider a hypothetical system with one single product, 10 channels,
and an arrival rate of 20 requests per minute. Further, assume that
at the optimal price, the acceptance rate is 0.6. In effect, if the con-
tent provider quotes the optimal price, there will be 12 customers
accepting the price. This clearly leads to an unstable system since
only 10 requests can be accommodated. On the other hand, by

�

The proof outline is presented in a detailed version of this work
[13].

�

We have omitted the proof for reasons of space.

Price

Critical Point
(System Capacity)

Number of Customers Accepting Quoted Price

Revenue

Maximum Revenue

Figure 2: Maximizing Revenue Under Resource Constraints

slightly increasing the price, the content provider can ensure that
only as many customers accept the price as can be accommodated
by the system. This is illustrated in Figure 2. In this figure, the
revenue and the number of customers accepting the price are plot-
ted as a function of price. At the price when revenue is maximized,
the number of customers accepting the price is more than capacity
of the system. By increasing the price to such an extent that only
as many customers accept as can be accommodated by the system,
maximum revenue is realized.

We formalize this idea by introducing the constraint of system
utilization. System utilization is the relative fraction of time for
which the channels are busy servicing requests. Let )/� . )7�
be the arrival rate of requests, % the number of channels, and the�

the average time to serve a request4. Then, the system utiliza-
tion, 8 , is defined as the ratio of the number of requests entering
the system per unit time to the number of serviced requests exiting
the system per unit time. The mathematical expression for system
utilization, when we charge a price ��� for product ��� , is given by:8
��� � ;9�:�:� ; � 0 	L�<;= . 0�>2 � )7�?�@� �+� $��,� �

For a stable system, the system utilization is bounded above by� . This imposes a constraint on the revenue maximization prob-
lem. Combining the expressions for revenue and system utilization
and the fact that prices should be positive, we formulate revenue
maximization as a constrained optimization problem:

ACBEDGF:H�F:I9J"K9- � 0L �>2 �

)7���,�5��� �+� $H�,� � (3)

�
% 0L �>2 �

) � ��� � � $H� ��� > � (4)M 3 ;L�D><3�>N( ;�� � C � (5)

4. PRICE DISCOVERING ALGORITHM
In the previous section, we formulated revenue maximization

as a constrained optimization problem. To solve the optimization
problem, the content provider would need to know the shape, scale,
and mean customer willingness elasticity for all the products. In
this section, we develop an algorithm that learns these parameters
in real-time and suggests prices to the content provider.

Our algorithm is based on gauging the customers' reaction to
different prices. Consider product � � . By observing customers'
decisions over a period of time for a trial price ��� , one can ascer-
tain the mean rate of acceptance for that price. This observed rate
is assumed to be the expectation of the decision to purchase, i.e.,��� �+�K$��,� � . Theorem 1, which quantifies �@� �"�K$ �,� � , depends on
four variables: price ( � � ), shape ( � ), scale (

�
), and mean customerO

We make the assumption that all products have similar service
time. For other systems, only the formulation for system utilization
will change. The constraint remains the same.



willingness elasticity ( E � G ). Of these we only know price. We as-
sume a set of feasible pairs of values for shape and mean customer
willingness. For each of these feasible pairs (

� � ; E�� ), we solve for
scale using Equation 2. Thus, we now have a feasible set of val-
ues for the scale of the customer capacity distribution. We now
set another trial price ���� . For each feasible tuple of shape, scale
and mean willingness elasticity, we compute the expectation of the
decision to purchase for price ���� . We then make a second round
of observations of customer decisions, this time for the price � �� .
By comparing actual customer reactions with the predicted reac-
tion, we can estimate the closest feasible tuple for shape, scale and
mean customer willingness elasticity. We can use these values in
the constrained optimization problem to compute the optimal price.
This new price is again used as a trial price and this process is re-
peated forever. Since there are continuous price experiments, any
changes in customer behavior will be detected by the algorithm.

There are a few problems in the algorithm outlined above. First,
customer preferences for products can be expected to follow a Zipf
distribution[16]. This means that request arrival rates will be highly
disproportionate. Therefore, the interval for observation to esti-
mate the rate of acceptance could be very large. Because the trial
price can be suboptimal, the greater the time spent charging the
trial price, the greater the loss of revenue. Second, if the number
of products is very large, the optimization problem can be fairly
difficult to solve.

We therefore classify the set of products into categories. Each
category consists of a set of products for which the content provider
estimates that the mean customer willingness to pay is “similar”.
The customer will be charged the same price for all products be-
longing to the same category. For instance, in a VoD system, the
content provider can classify movies as Hot, Cold and Special. Hot
movies are those that the content provider thinks are very popu-
lar. Cold movies are those for which customer may not pay a lot.
Special movies are those that have a limited appeal, but those who
prefer it have a high willingness to pay. Alternately, the content
provider can classify the movies as Action, Western, Romance, etc.
We believe that content providers can make classifications based on
customer willingness to pay with a reasonable degree of accuracy.
Since every product in a class is charged the same price, each class
of products can be thought of as a single meta-product. There are
two advantages of working with a set of meta-products: (1) the rev-
enue optimization problem is more tractable since there are fewer
variables, and (2) the intervals of observation for estimating the rate
of acceptance are much smaller.

Another assumption we make is that the content provider sets
a minium price and a maximum price. Any prices suggested by
the algorithm that are not in this range are ignored, and the near-
est bound is set as the new price. Such bounds represent policy
decisions that may be made by content-providers in real-life.

The modified algorithm makes a round of observations of cu-
tomer reactions for each product. A round of observations is com-
plete as soon as there are �	� � � requests for any of the meta-products.
It is quite possible that one of the meta-products has received very
few requests when the round is over. In this case, since the ar-
rival rate for that meta-product is small, an erroneous estimate of
the acceptance rate will not affect the revenue maximization. The
specifics of the algorithm are outlined in a detailed version of this
work [13].

Inspite of the very large number of unknowns, our algorithm is
able to produce consistently high revenues (when compared with
the maximum expectation) in our simulations. We discuss our sim-
ulation scenarios in greater detail in the next section.

5. SIMULATION
We have implemented a simulator to model a content delivery

system. Using simulations, we analyze the performance of the
price discovering algorithm described in Section 4 and compare
its performance with two other pricing schemes5. We describe the
simulation scenario below.
System Description: We performed simulations with 1000 logical
channels. We chose a fixed number of channels because the system
capacity typically does not change very often. We chose request
service times from a uniform distribution between 90 and 110 min-
utes. This closely models the typical length of movies. Channels
were allocated based on a FCFS policy. Requests arriving when
there are no free channels are rejected. There is no waiting queue.
Customer Choice of Products: In all our simulations we assume
that there are 50 products for the customer to choose from. Cus-
tomer choice of the products was assumed to follow a Zipf-like
distribution with zipf-exponent6 , 
0� �G� �� . In a Zipf-like distribu-
tion, the 354�6 popular product in a group of ( products is requested

with probability � ������� � �� � .

Customer Capacity and Willingness: Since our system delivers
only similar kinds of products7, we assume that for any given cus-
tomer, his/her maximum valuation (or capacity to pay) for all the
products is the same. Only the willingness to pay differs over prod-
ucts. A high request arrival rate for a specific product can be di-
rectly correlated to a high willingness to pay for that product. Alter-
nately, there may exist no correlation between popularity and will-
ingness to pay. We simulate both scenarios. In the first scenario,
the mean customer willingness for the 3 4�6 most popular product

was chosen to be � ����� � �������� � �� � , where � � �G� �� . In the second

scenario, the products were ranked according to customer willing-
ness to pay. The mean customer willingness of the 3 4�6 ranked prod-
uct was chosen in a similar way as in the first scenario. The set of
mean customer willingness values so generated is highly skewed,
with very few products having a high mean customer willingness
and most other products having a low mean customer willingness.
Request Arrival Process: We simulated a variety of arrival-rate
models, adapted from the work on arrival-rate based scheduling by
Almeroth et al.[1]. The workloads, presented in Figure 5, are mod-
eled based on a 24 hour period beginning from 8.00am of one day
and running to 8.00am of the next. “Prime time” periods see a
surge in demand. We have used a steady baseline workload, with
no surges in demand, and three non-steady workloads. The arrival
rates during prime time for the non-steady workloads was around
five times greater than the normal rate– based on statistics reported
by Little and Venkatesh [14]. We simulated both gradual as well
as sudden increases in arrival rate. We also used a workload with
hourly spikes in arrival rate during primetime. This type of work-
load is based on the belief that the workload for some systems may
be synchronized with an external event like wall-clock time.
Pricing Policies: We assume that the content-provider will charge
at least $1 and not more than $10 for serving the content. In all
our simulations, we assume that our unit of currency is a dime (10

�
While it would be interesting to use real data to validate our

model, such data does not exist. The reason is that customers will
seldom disclose their true valuations for products.�
Web-page accesses have been observed to obey a Zipf-like distri-

bution with zip-exponent in the range 0.64 to 0.83 [5].�
For instance, on a VoD server, only movies are streamed and we

can assume that a customer has a single maximum valuation for
movies, even though his willingness to pay for specific movies is
different.
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Figure 3: Workloads

dimes = $1). To better understand the performance of our price
discovering algorithm we compared its revenues with those of two
other pricing policies: 1) optimal pricing and 2) fixed pricing. The
optimal pricing policy is based on a prescient algorithm that knows
all the parameters of the system. Using all these parameters, it com-
putes the optimal price for each product using the constrained opti-
mization package. The optimal pricing policy is clearly unrealistic
because it is impossible to know all the customer behavior parame-
ters. It is therefore an upper bound on the achievable revenue for a
price discovering algorithm. The fixed pricing policy on the other
hand is simplistic and practical. The content provider chooses some
fixed price and charges all customers the same price irrespective of
the product requested. The problem with this policy though is that
the content provider does not know what price to charge. For the
purposes of comparison, we repeated the simulations with different
prices, starting with a price of 10 and going up to 100 in increments
of 1.5. Assuming that all these prices are equally likely, we com-
puted the mean revenue earned in the simulations for each of these
prices. To get a better idea of how a particular fixed price impacts
overall revenue, we also present results for simulations with prices
20, 40, 60 and 80. The fixed pricing scheme we outlined above
is a representative of the class of fixed pricing algorithms. We do
not claim that our fixed pricing scheme is the best representative
of that class. It is not the aim of this paper to benchmark our al-
gorithm with respect to the best fixed pricing algorithm. Instead,
our objective is to understand the flexibility that a price discover-
ing pricing scheme provides in adjusting to customer behavior and
resource constraints.

5.1 Simulation Results
We ran simulations for a period of 1440 minutes (one day of

simulated time). All the simulation results are averaged over 10
runs with different seed values for the random number generator.
In case of the price discovering algorithm, in all our simulations,
the products are classified into three categories. The same price is
charged for all products in the same category. The metric we use
in our simulations is called the revenue-ratio. The revenue-ratio of
a pricing scheme for a particular simulation is the ratio of the rev-
enue generated by that pricing scheme to the theoretically predicted
maximum expectation for that simulation. The higher the revenue-
ratio, the better the performance of the pricing scheme. Since the
revenue-ratio is with respect to an expectation, it is possible for the

revenue-ratio to be greater than 1. Moreover, since the maximum
expectation is computed using numerical methods, our results are
accurate only within error bounds.
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Figure 4 shows the performance of the three pricing schemes
for different customer capacities. The revenue-ratio is presented
as a function of the scale of the Pareto distribution. The scale of
the Pareto distribution is varied from 20 to 85. The results for the
fixed pricing schemes are presented in a separate graph to improve
readability. The revenue-ratio for the different fixed prices varies
with the scale of the distribution. This indicates that, if the con-
tent provider does not know the customer behavior parameters, the
revenue earned can be suboptimal. Notice that the mean revenue
of the fixed pricing schemes increases with the scale. This is be-
cause as the scale increases, more customers could pay the prices
charged in our simulations. The price discovering algorithm gen-
erates revenue within 80% of the optimal. The revenue generated
by the price discovering algorithm is low for the lower values of
scale because in all our simulations, we started with intial test price
vectors of

� ��� ; � � ; � � � and
� � � ; ��� ; ��� � respectively. Since these

prices are much higher compared to the scale of the Pareto dis-
tribution, there is an initial loss in revenue. The prescient algo-
rithm generates nearly the same revenue as the predicted maximum
expectation. This validates our theoretical results. In this set of
simulations, there is no correlation between popularity of a prod-
uct and the mean customer willingness to pay for it. The results
for the other scenario, where the popularity and willingness to pay
are correlated, are very similar. We have presented results only for
one of the workloads due to reasons of space. The revenue-ratios
were similar for the other workloads. However, the actual revenue
earned was higher in case of workloads with high request arrival
rates.

In the simulations presented above, the customer behavior was
invariant over time. But this may not be true in a real-world setting.
For instance, one may expect a greater willingness to pay during
“prime-time” than say, during “office-hours”. We performed many
simulations to see how these behavioral changes may impact rev-
enue. We present results for two scenarios–one where the scale
of customer distribution increases during prime time and the other
where the elasticity of willingness changes randomly during prime
time. The results are presented in Figure 5. We also investigated
how performance of the price discovering algorithm deteriorates
when the frequency of customer behavior changes increases. For
a good algorithm, this deterioration should be smooth and if possi-
ble negligible. In our simulations, we observed that the algorithm
was able to adapt to changes in customer behavior. In fact, the
performance (with respect to the optimal) does not deteriorate sig-
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Performance when mean willingness is changed randomly
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Figure 5: Performance with dynamic customer behavior

nificantly even when customer behavior changes after every hour of
simulated time. We do not present the results for reasons of space8.

6. RELATED WORK
Our work has been motivated by the significant amount of re-

search on bandwidth and congestion pricing. Dynamic pricing schemes
[15, 7, 10] have been shown to be socially and economically effi-
cient. The main thrust of such schemes has been to increase prices
when resources are scarce. Such research has been “resource-centric”,
where the primary focus has been on managing resources and not
on revenue. Our work has also been motivated by research which
has been “content-centric”[8, 4], and not concerned with resource
constraints. Ignoring resource constraints can however lead to a
situation where customers are rejected due to lack of server or
bandwidth resources. We believe that our work strikes a balance
between resource considerations and customers' value for the con-
tent.

To the best of our knowledge there has been very little research
on online price discovering algorithms [11, 12]. Most research has
been focussed on agent based market economies [3, 6, 9].

7. CONCLUSIONS AND FUTURE WORK
We have developed an analytical framework for pricing of on-

demand content. The framework models customer behavior as well
as resource constraints. Based on this framework, we have devel-
oped an algorithm that suggests prices to the content-provider. We
have analyzed the peformance of our algorithm using simulations.
We have used a simple fixed pricing scheme and an unrealistic op-
timal pricing scheme as a baseline for comparison. We have ob-
served that the fixed pricing scheme can generate sub-optimal rev-
enues if parameters governing customer behavior are not known.
We have also observed that the relative performance of the pricing
schemes is independent of the request arrival rate. We also ob-
served that the fixed pricing scheme breaks down in the presence
of dynamic customer behavior. Finally, we have observed that our

�

Results are presented in a detailed version of this work [13].

price discovering scheme performs consistently even with highly
varying workloads and dynamic customer behavior.

Our work models a monopolistic market. Competition will af-
fect customer behavior and hence the maximum expectation of rev-
enue. Learning customer behavior in competitive markets needs to
be studied in greater detail. Another avenue for research is to study
the tradeoffs between a dynamic pricing scheme and a subscription-
based pricing scheme and how the two can be integrated.
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