Real-Time Multicast Tree Visualization and Monitoring*

David B. Makofske Kevin C. Almeroth
Dept of Computer Science Dept of Computer Science
University of California University of California
Santa Barbara, CA 93106-5110 Santa Barbara, CA 93106-5110
davidm@cs.ucsb.edu almeroth@cs.ucsb.edu

March 24, 2000

Abstract

The exponential growth of the Internet combined with the increasing popularity of streaming
audio and video are pushing Internet bandwidth constraints to their limits. Methods of man-
aging and more efficiently utilizing existing bandwidth are becoming increasingly vital. Using
IP multicast to deliver content, especially streaming audio and video, can provide enormous
bandwidth savings. A decade of effort at deploying multicast, combined with the rising need for
better traffic management for bandwidth-hungry applications has led to significant momentum
for multicast use and deployment. One of the remaining barriers to widespread adoption is the
lack of multicast monitoring and debugging tools. To address this need we introduce MHealth,
a graphical, near real-time multicast monitoring tool. MHealth utilizes existing tools to collect
comprehensive data about Realtime Transport Protocol (RTP) based streaming audio/video
sessions. By using a combination of application-level protocol data for participant informa-
tion and a multicast route tracing tool for topology information, MHealth is able to present a
multicast tree’s topology and information about the quality of received data. In this paper we
describe the design and implementation of MHealth and include an example analysis of multicast
tree statistics.

Keywords: multicast, management, monitoring, topology, routing, tree determination

*This work has been supported in part by a research grant from Cisco Systems Inc. through the University of
California MICRO Program.

1 Introduction

Exponential growth in the Internet continues to dramatically increase the total number of connected
people. In addition to the shear volume of new users, the amount of the data transfered has grown
as more applications use innovative media like hypertext, pictures, audio, video, etc. One of the
most significant examples of applications that are more bandwidth-intensive are those that use
streaming media. The result is that an increase in users and data has produced considerable strain
on the existing Internet infrastructure. This has led to a number of highly publicized network
and server failures; particularly when major events such as political scandals, international crises,
or entertainment events have attracted users to request streaming audio/video content en mass.
The growth trends suggest these events, and the congestion they cause, will increase in scope and

frequency.

Wide area bandwidth is clearly not keeping up with customer demand. Furthermore, the ability
of end stations to send/receive increasing volumes of data will only increase. A main contributer is
the rapidly increasing bandwidth capacities in the “last mile”—one of the few remaining bottlenecks
helping to restrict user data flow into and out of the Internet. As computers become faster, and
cable modems and digital subscriber lines (DSL) become more common, Internet congestion will
only become worse. Methods must be implemented to manage and utilize the existing Internet
bandwidth more efficiently. These methods can take many forms, such as moving the content
closer to the requesters (caching and replication), more conservative sending techniques (request
aggregation), and increasing the functionality provided by the routers (multicast and quality of

service techniques).

Multicast offers a compelling bandwidth management technique for streaming audio and video.
This is especially true when it is used for broadcast-style applications, e.g. when a pre-recorded or
live multimedia stream is sent to many receivers simultaneously. In contrast to unicast, which sends
from a single source to a single destination, multicast allows a source to send data once and have
it reach a group of interested receivers. The source sends packets to a multicast group address and
the network routers replicate the packets when the paths to the receivers diverge. Each multicast-
enabled router ensures that packets flow on the correct links to reach all of the receivers who have
joined a particular multicast group. When a streaming media broadcast is sent with unicast, there
is a high redundancy of data transfer on each network link, but with multicast, a single stream
is likely to never traverse the same network link more than once. With high quality MPEG(1] at
several Mbps per stream, multicast would greatly reduce load on the network and on the server.
Depending on the location and number of receivers, the bandwidth saved with multicast can be

many orders of magnitude.

Despite the conceptual simplicity of multicast and its obvious benefits, its implementation is
difficult. After much research experimentation, multicast was initially deployed as the research-
oriented Multicast Backbone (MBone)[2]. has now grown beyond a research network and is begin-
ning to be deployed by Internet Service Providers (ISPs) and used by service-oriented companies|[3].
However, the growing popularity of real-time audio and video traffic and the aforementioned net-
work failures have created a compelling business justification for multicast. Organizations such as
the TP Multicast Initiative (IPMI)! have been working to educate consumers about the benefits of
multicast, and major ISPs have been implementing and promoting multicast as a network service.
Broadcast.com (now Yahoo!), a leading provider of streaming media content on the Web, has been
actively encouraging the use of multicast. Furthermore, commercial tools such as Real Network’s
RealPlayer and Microsoft’s NetShow are now multicast enabled. Almost all router manufacturers

now include some multicast capability as a standard feature on their routers.

Many ISPs are still reluctant to enable multicast on their networks because of the difficulty of
properly managing multicast[4]. Deployment of multicast is not a simple of matter of configuring
routers and switches but also requires significant expertise and management capabilities. There are
few tools available for monitoring and debugging multicast networks, and the tools that do exist
are difficult to use. Furthermore, the philosophy in developing multicast tools has been to try and
duplicate the functionality of unicast tools. While this makes the tools easier to understand, it
limits their utility. There is a strong need for multicast debugging and monitoring tools that are
graphical, intuitive to use, and display multicast as a one-to-many network service. While some
multicast monitoring tools exist, none meet our goals of working in today’s Internet and providing
both tree visualization and reception feedback in near real-time. As more and more companies and

ISPs activate multicast in their networks, this will become an increasingly critical need.

This paper describes MHealth, the Multicast Health Monitor, which is a graphical, near real-
time multicast monitoring tool. MHealth handles the unique characteristics of multicast traffic by
collecting a comprehensive set of data about a session. By using a combination of application level
protocol data about group participants, and a multicast route tracing tool for topology information,
MHealth is able to discover and display the full multicast distribution tree and delivery quality.
MHealth also provides data logging functionality for the purpose of off-line analysis. As an example
of this function, we present an analysis of data collected using MHealth. Finally, while the concept
of MHealth has proven successful, the technology underlying the tool could be improved. We discuss

some of the limitations of MHealth and propose ways of making improvements.

The remainder of this paper is organized as follows. Section 2 discusses related work in the field

of multicast network monitoring and multicast data analysis. Section 3 introduces the MHealth

Yhttp: / /www.ipmulticast.com/

tool, discussing its design, implementation, and some observational analysis. Section 4 evaluates
the effectiveness and issues of MHealth, and section 5 presents future work. Section 6 summarizes

the work and presents conclusions.

2 Related Work

There are a number of existing tools for monitoring, debugging, and analyzing multicast traffic and
data flow[4]. These tools have mostly evolved out of a need to debug connectivity problems and
multicast routing bugs. As multicast has evolved into more of a commercial service, these tools
have struggled to fill the needs of network administrators. Today, tools are needed which are more
suited for identifying whether multicast traffic and trees are “healthy”, i.e. whether a group’s traffic
is of acceptable quality, whether traffic is reaching all of the group’s members, and whether traffic

is flowing across unnecessary links.

One of the most important tools in use today is mtrace[5], a multicast version of traceroute.
Mtrace works by starting at one of a group’s receivers and tracing the reverse path back to the
source. The reverse path is used since this is how group members are added to the group. Receivers
join a group by sending a join towards the source. This join messages travels a reverse path,
“reverse” in the sense that it is opposite of how the traffic will flow. As this join message travels
towards the source, forwarding state is created. This allows the source to send packets over the
tree created by the forwarding state. This also means that the source can send packets to a group
without knowing who the members are. Mirace is one of the primary data sources used by MHealth

and will be discussed in detail later in the paper.

Several tools provide statistics based on the Realtime Transport Protocol (RTP) and its associ-
ated control protocol the Realtime Transport Control Protocol (RT'CP)[6]. Many of the multicast
tools use RTCP to create a list of group members. RTPmon[7] collects and displays this infor-
mation along with real-time statistics about packet loss and jitter. Mlisten[8] uses RTCP packets
to collect and archive group statistics for all MBone groups advertised through sdr. MultiMON[9]
monitors the multicast traffic on a local network segment and provides graphs on media types and

amounts.

In addition to these tools, there are several SNMP-based management tools. Merit Network has
developed a suite of tools including: mstat, mrtree, and mview[10]. Mstat allows an SNMP-enabled
router to be queried for information, including routing tables and packet statistics. Mrtree uses cas-
caded SNMP router queries to provide a text-based representation of a particular multicast group’s
topology. Muiew is a tool for visualizing MBone topology as well as monitoring and collecting data

from mrinfo, mtrace, mstat and mrtree. The topology construction function requires a user to click

on a node and specify one or more information finding actions. These tools are well-suited for use
within an administrative domain. They are not suited for the inter-domain because one ISP is

unlikely to give detailed access to either end users or network managers in other networks.

Several papers have been published on the analysis and behavior of multicast groups in the
MBone. However, these works have tended not to focus on real-time visualization. In work by
Handley, tools were written to log RTP/RTCP packets and collect mtraces for an MBone session[11].
The data sets were then used to manually create a picture of the multicast tree and various statistics
about links in the tree. Yajnik, et al. characterize a controlled MBone session by analyzing
packet loss statistics from 11 participating sites[12]. The data is examined for spatial and temporal
correlation. Almeroth and Ammar use milisten to collect group membership data for all MBone
sessions over an extended period of time[13]. Analysis efforts focused on modeling temporal, spatial,
inter-session and intra-session characteristics. Our goal with MHealth is to provide some of these

group characteristics in real-time while also logging the data for later analysis.

3 The MHealth Tool

In this section we present the MHealth tool, a prototype developed with the goal of exploring
the difficult task of real-time multicast tree estimation. Our description of MHealth includes the
design of the tool including what underlying tools and data are required; a description of how tree
data is presented and how a user can use the tool. We also provide a sample data set collected
with MHealth and show sample analysis of how the data can be used to provide insight into tree

characteristics.

3.1 Design

An understanding of M Health operation is such that it necessitates some background on how stream-
ing audio and video are sent on a multicast channel. Since multicast transmission for real-time
streaming applications is one-to-many, the Transport Control Protocol (TCP) is not a suitable.
Every TCP packet requires an acknowledgment, and requiring many receivers to acknowledge ev-
ery packet would soon overwhelm the source with acknowledgments. This situation is referred to
as ACK implosion. In order to scale to large number of receivers, IP multicast usually uses the
User Datagram Protocol (UDP) as its transport protocol. UDP provides a connectionless service
and does not guarantee against lost, duplicated, or out-of-order packets. This leaves the issue of
how to send real-time data over multicast without all of the services of TCP; most importantly,
reliability and congestion control. Furthermore, real-time data has very stringent requirements in

terms of packet inter-arrival and delay. While data should be delivered as accurately as possible,

the real-time nature of streaming media prohibits retransmission of lost packets. Finally, UDP’s
connectionless nature means that without connection-oriented endpoints for data flow, it is difficult

to determine the receivers of a multicast stream and the routes the data must take to reach them.

In order to provide better support for streaming media, applications commonly use an applica-
tion layer protocol, sometimes called Application Layer Framing (ALF)[14]. An ALF-style protocol
can take the form of a separate protocol layer between the application and the transport layer, or
it can be integrated into the application itself. ALF-style protocols add important functionality
such as reordering and packet timing on top of UDP’s port multiplexing services. One ALF-style
protocol used for streaming real-time audio and video is RTP. It is used in the MBone tools as
well as in several commercial streaming tools. RTP provides payload type identification, sequence
numbering, and timestamping on top of UDP. RTCP, the control protocol for RTP, allows par-
ticipants in a multicast group to report their membership and the quality of their reception. The
protocol specification states that RTCP packets are to be sent by each group member on the group’s

multicast address but using a different port number.

Multicast monitoring tools are a more difficult task than TCP-based tools. Simply put, TCP-
based tools can take advantage of state information that exists at network endpoints. No such
state exists for UDP-based protocols like multicast. There is no transport level connection setup,
and the source does not known who receiver(s) are. There are two basic mechanisms that can be
used to collect multicast group information: query the routers for network-layer state, or query
group members for application-layer state. For group members, RTCP is one example of a protocol
used for exchanging application-layer state. To obtain network layer state, there are a number of
options. In one case, routers can be queried directly. Queries are made using SNMP or by logging
in to the router and dumping the router’s state. However, frequent, direct access can be costly in
terms of overhead and it can create security risks. Another option is to query routers using a less
resource intensive and more controlled interface. Tools like traceroute and ping use this mechanism.
Most existing management tools have relied on using either network-layer data or application-layer
data but not both. In the few cases where tools do use both methods, they typically display the

results separately and do not attempt to integrate them.

MHealth integrates both application layer data and in-direct router-based information obtained
from mtrace into a single monitoring tool. MHealth relies on the application layer protocol infor-
mation from RTCP packets to determine the group membership and the delivery quality (jitter,
delay, and loss) at each participant. Once MHealth has established a group’s participants, the
mirace utility is used to trace the hops in the tree. As a path between each source and receiver
is established, it is combined into a tree data structure and graphically displayed. The details of

these data sources are now described.

3.1.1 Real Time Control Protocol

RTCP is defined as part of the RTP standard. The RTP portion of the protocol applies application
level framing for real-time data, providing payload type identification, sequence numbering, and
timestamping. The RTCP portion of the protocol is a periodic transmission of control packets by
all group members to all other group members. In the MBone, RTCP packets are usually sent on
the same multicast address as the RTP data itself, but on a different UDP port. Typically the data
port is an even number, n, and the control port is n+1. RTCP is described as having four primary

functions.

1. RTCP provides feedback on the quality of the data transmitted to the multicast group. This
is a critical transport function of RTP and can be used to develop and implement flow and
congestion control, adaptive encoding techniques, and fault diagnostics.

2. RTCP carries a persistent transport-level identifier for an RTP source called the canonical
name. It is used to synchronize data from multiple tools (such as audio and video).

3. RTCP packets are used by each participant to estimate the group size. This estimate is
important for scaling the RTCP send rate of each group member. This function helps make
RTCP scalable, and prevents members in large groups from causing congestion solely based
on control traffic.

4. RTCP provides distribution of group membership information. This is meant to be used as
an informal mechanism. However, it is not a reliable accounting mechanism.

Each RTCP packet consists of one or more packet sections. The key sections used by MHealth
include the following: the sender report, the receiver report, the source description, and the BYE
section. If the packet sender is an RTP source (as well as a receiver), it will include a sender
report which contains information about the RTP data being sent. If the packet sender is receiving
RTP data from one or more sources, they will send a receiver report per RTP data source, up to
a maximum of 32 per RTCP packets. These reports contain reception statistics about each data
source. The source description section contains one or more text elements, including the canonical
name, which describes the RTCP sender. If the BYFE section is present, it indicates the RTCP
sender is leaving the multicast group. A BYFE packet should be the last RTCP packet heard from
a group member unless they later rejoin the group. Because a BYFE packet could be lost, some
mechanism must be used to eventually remove group members. A receiver will “time out” if no

RTCP packet has been heard from the receiver for a reasonable period of time.

In order for RTCP to scale to potentially very large multicast sessions, the send rate for RTCP
packets must be controlled. If the amount of RTCP traffic is not controlled, it could grow linearly

with the number of group members. For large groups, this could swamp the group with control

information. To avoid this problem, each group member uses an algorithm to determine an RTCP
send interval. As the group size increases the time between RTCP transmissions for each member
also increases. For small sessions, RTCP packets are usually sent by each group member once
every b seconds. In very large groups, members may send RTCP packets only once every couple
of minutes. RTCP’s goal is to limit the control traffic bandwidth to less than 5% of RTP data
bandwidth. Of interest to MHealth is the granularity at which RTCP packets are sent. Large
groups do not send RTCP reports frequently and so it is difficult to monitor members in large

groups with fine granularity. Dealing with large groups is addressed later in the paper.

The richness, granularity, and completeness of the data provided by RTCP make it a logical
choice as a data source for multicast group monitoring and management. Few other mechanisms
provide any kind of information similar to that provided by RTCP. The RTP specification strongly
recommends that all participants send RTCP packets, and most implementations currently do. It
is still possible that not all RTCP packets are received. Some of the reasons include firewalls,
unidirectional links, UDP packet loss, or tools that do not conform to the RTP specification. How-
ever, RTCP packets are the only standardized way to determine group membership of a multicast
session. Currently, RTCP is the best mechanism available for a tool like MHealth to ascertain group
membership information. In the case where RTCP is not used, some other mechanism must be
found to determine who group members are. This may not be an easy task but is necessary for

many management applications, especially those like MHealth.

3.1.2 Mirace Utility

Once participants in a multicast session are identified, the topology must be discovered. The mtrace
utility, a multicast version of traceroute, can provide this information[5]. Mtrace also provides
additional information such as total multicast packets per hop, group-specific hop counts, and
packet loss per hop. One of the disadvantages of mtrace is that it only reports the route from
one participant to the source at a time. So MHealth must perform numerous miraces, one for
each participant in a session. MHealth then uses these traces to build a tree topology. In tree

visualization, MHealth provides links to the other information called by mtrace.

Although the output from mirace is clearly analogous to the traceroute output, the underlying
tracing mechanism has a significantly different design. A unicast traceroute sends a series of packets
with increasing Time-to-Live (TTL) values. As the TTL expires at each hop, an Internet Control
Message Protocol (ICMP)[15] packet is returned to the source. This ICMP packet identifies the
router at which the TTL expired. By listing the series of routers that return ICMP messages, an

estimate of the path from the source to the destination can be built.

The approach used by traceroute cannot be used in multicast because ICMP TTL expiration
messages are explicitly suppressed. These messages are suppressed for multicast addresses because
multicast relies heavily on TTL scoping to control flooding. This requires a different technique
for determining the multicast path from a source to a receiver. The approach taken has been to
require all multicast routers to have customized functionality to respond to multicast trace requests.
While this increases the overhead and complexity of the router, it does provide crucial diagnostic

information.

Multicast trees are constructed in the reverse direction-receivers initiate a join message which
flows toward the source. As a result of this difference in how unicast and multicast determine traffic
flow, the tracing mechanism for multicast is substantially different than the techniques used for
tracing a unicast path. Each router in a multicast tree does not know which receivers it is sending
to; it merely knows the incoming and outgoing interfaces that each distinct group and source
pair should flow on. This state is maintained by the multicast routing protocol for intermediate
hops[16, 17, 18], and by the Internet Group Management Protocol (IGMP)[19] for the last hop
(leaf) router. At each router only the outgoing interfaces that traffic should flow on is known.
Which of those outgoing paths a given receiver is on cannot be determined. As a result, it is not
possible to use the unicast traceroute method of tracing from a source to a particular receiver. The
solution is to start at the receiver’s location, and travel backwards toward the source. Since each
router knows the incoming interface of a group’s data—it is the interface the router would use to
get back to the source—a path can be determined hop-by-hop from the receiver to the source. This
is called a reverse path lookup. The reverse path is also the same path the receiver’s join message

took. Therefore, it is the same path that will be used for the source’s traffic.

The reverse path lookup requires that routers be able to process a special mtrace IGMP Query
packet. This packet is multicast by an mitrace initiator on the ALL-ROUTERS multicast address
(224.0.0.2). The last hop router for the receiver specified in the Query packet recognizes it is the
last hop router and initiates the mtrace. The last-hop router appends its data to the mitrace packet;
alters the packet type from Query to Request; and forwards the packet via unicast to the previous
router (the incoming interface for the source-group pair being traced). This continues up the path
to the source until it reaches the router directly connected to the source. This router realizes the
source is directly connected to it; appends its own information to the packet; and alters the packet
type from a Request to a Response. The final packet is then either sent via unicast or multicast
(according to packet field settings) to the mitrace initiator. If a router along the reverse path is

having trouble contacting the next upstream router, the mtrace initiator will be sent the trace data

up to that point. If the previous hop router cannot be contacted within a period of time, the mirace

will timeout and fail.

The added functionality required by the router allows mtrace to be more flexible and informative
than a normal traceroute. One of the most important differences between mirace and traceroute is
that mirace allows third-party mtraces, i.e. the initiator need not be the source or the destination.
The IGMP query request header includes the multicast group address, the source address, the
destination (receiver) address, and the response address where the mitrace data should be returned.
In addition to this flexibility, mirace collects and returns more comprehensive information. Data
returned includes (1) the total number of packets received and transmitted on an interface, (2) a
group-specific count of incoming and outgoing packets (if a group is specified), (3) the multicast
routing protocol used, (4) the TTL required to reach the particular router, and (5) the explicit
error messages when an mirace cannot complete. This data, from each router, is appended to the

Reguest packet as it flows from the receiver to the source.

MHealth relies heavily on mtrace and the data it collects. A decision early in the prototyping
effort led us to run an existing implementation of mtrace and then parse the results. We believed
the complexity of implementing mirace from scratch would have been excessive for a prototype.
In hindsight, it would have been more efficient and offered better flexibility to have implemented

mtrace inside of MHealth.

3.1.3 Mtracing Hierarchy

When MHealth was first run on large groups, there were a fairly significant number of mitrace
failures. On further investigation, several problems were isolated which required different command
line options to correct. In many cases, the sets of options required are orthogonal and cannot be
combined into a single execution of an mirace. By running multiple mtraces we can increase the

percentage of mtraces that are successful.

Up to three different mitraces are attempted for each receiver before MHealth moves on to the
next receiver. First, a standard mitrace from a receiver to the group source is attempted. If it fails,
a gateway mtrace is attempted. One of the major reasons why an initial mtrace fails is because the
Query cannot find the receiver’s last hop router. A gateway mitrace solves this problem by explicitly
contacting the last hop router via its unicast IP address rather than attempting to multicast the
mirace request. The challenge is first to determine the last hop router. This is accomplished by
doing an mtrace from the machine running MHealth to the receiver. This discovery mitrace, if

successful tells MHealth the IP address of the last hop router. Then, a gateway mtrace is run.

10

‘ Loss ‘ Router Color ‘ End Host Color ‘

loss < 2% white green
2% < loss < 10% yellow yellow
loss > 10% red red

loss not reported N/A pink

Table 1: Color coding by loss.

Finally, if the gateway mitrace fails, a reverse mtrace is attempted. Sometimes tracing this path
yields a result. Using the assumption that the forward path is the same as the reverse path, the
route can sometimes be determined. Although this assumption is not always the case, it is better
to have a reasonable estimate than having no route data at all. No statistics can be collected for a
reverse mirace, because the reverse mirace only displays statistics on data flowing from the receiver
to the source. By trying these three different mitraces, the successful trace percentage increased

substantially. Results showed the average success rate increased from 67% to 80%.

3.2 User Interface

In prototyping, the decision was made to write MHealth in Java for the dual reasons of cross-
platform operation and ease of GUI prototyping. MHealth provides tree visualization functions as

well as presentation of other data statistics. These two functions are described next.

3.2.1 Visualizing Multicast Trees

When a user starts MHealth, they provide a multicast IP address and a port number, either on the
command line or in a startup menu. The user also has the option of enabling logging at this point.
The logging function writes to a file all the RTCP packets received and the mitraces performed
throughout the session. Once started, MHealth begins listening for RTCP packets and builds a
source and receiver list. This list is displayed on the MHealth window as they are identified. The
sender(s) are displayed across the top of the screen and the receiver(s) are displayed across the
bottom of screen from left to right in the order they are first heard. The domain name of the host
is displayed if it fits in the box, otherwise the IP address is displayed. Reception quality information
including the packet loss rate and jitter is also obtained from the RTCP packets. As the session
sources and receivers are displayed, they are color coded according to their loss percentage (see

Table 1). The color code is updated with each new RTCP packet received.

11

Once MHealth has heard from at least one source and receiver, it can start building the multicast
tree. MHealth begins executing miraces to determine <source,receiver> paths. Once a route is
determined, the path is drawn graphically on the screen. The mtrace packet loss statistics are
reported below each hop. These statistics are represented as a fraction of packets lost over total
packets expected. Measurements are made for an interval of time measured right before the router
was queried, e.g. 5/265 would indicate that 265 packets were expected but only 260 were received.
The computed percent loss is used to color code the routers in the same way that senders and
receivers are coded. One difference is that routers with no or low loss are colored white instead of

green to distinguish them from end hosts.

Occasionally mtrace will report a negative number of packets lost, such as -5/265. This -5
indicates that the router actually received 270 packets out of 265 expected. Extra packets are
probably due to unnecessary router duplication. Every once in a while, packet duplicates will be
significantly larger, possibly suggesting flooding or routing loops are occurring. An important note
is that packet duplication for any reason can mask loss. That is, -5/265 could mean that no packets
were lost and 5 packets were duplicated, or it could mean that 10 packets were lost and 15 packets
were duplicated. There is no way to differentiate these two cases. MHealth represents a negative

packet loss as no loss.

Figure 1 shows a snapshot of the MHealth tool. The tool has displayed a small multicast tree.
Once MHealth has traced all receivers in a session, it loops back to the beginning of the receiver

list and continues repeating mtraces to keep the loss data and routes reasonably up-to-date.

Because mitrace is a point-to-point path discovery tool, there are some issues in combining
its results into a tree. The first issue is how to deal with different reported packet statistics for
overlapping links in the tree. In this case, MHealth keeps only the most recent statistics. As each
new mirace is executed and its results updated in the tree, it will overwrite any existing hop data
on shared tree nodes. Since all of these receivers have at least one hop in common, some of the
data overwritten will be from other receivers. In Figure 1, for example, the last receiver traced was
the one on the far right, 205.207.237.47. Therefore, the packet loss statistics for the shared links in
the path to 205.208.237.47 are actually the loss reported from the mtrace to 205.208.237.47.

Over time, the membership and topology of the group may change. As RTCP packets are
heard from newly joined receivers, they are added to the bottom of the MHealth window, and will
eventually be traced. If an explicit RTCP BYFE packet is received, the receiver and the portion of
the topology that was unique to it will be immediately removed from the tree. In the case where

a BYFE packet is lost, the receiver will eventually be timed out of the session. After the first few

12

224.2.253.119/42418 1

Mtracing receiver. twinkie.ipra.nekia.com / 205.226.9.119

1] b

| 204.70.7451 || 204707477 |
|0f249

| 2047011448 || 204706477 || 204,70 E4.E1

|0.H'249 07256 I1 L

| 2047015877 | Follux.Telequhe.net| | 404,68

|uf249 |—2f255 |uf253

|engr—gw.ucsh.edu || elbkj7jaringmy || 404,29

2249 07258

2047010451
205.207.238.212

0/234.

bigsky | 207.112.240,150 || 192.42.110.249 ” psp.hell.canet.ca'l

Mtrace: COMPLETE|

‘20:?.1:3’"5;83’.&9
Mtrace: COMPLETE

0/252 7/234

Mon Feb 01 22:22:55 PST 1999 |

Figure 1: A sample MHealth screen shot of a small multicast tree.

13

minutes without receiving a packet, the receiver’s box will turn gray. After a few more minutes,

the receiver and their associated topology will be removed from the tree.

Topological changes may occur as a receiver is traced multiple times. Initially the idea was
to keep all topology information in the tree, so that route flapping and changes could be visually
identified. However, when route flapping occurred frequently, this made the tree confusing and
distracting. The approach was changed to only show the most recent topology traced for each

receiver. Route flapping and route changes are relegated to log files for post-session analysis.

3.2.2 Viewing Additional MHealth Information

In addition to visualizing a group’s tree, MHealth is interactive and provides a number of user

functions. Each of these functions is described below.

View Stats. Additional information for each node in the tree can by displayed by clicking on the
node. A window of collected data for that node is displayed. The actual data displayed will vary
depending on the type of node: sender, receiver, or router. Senders and receivers always display
the data from the most recently received RTCP packet. This information is broken into three basic
display sections, which roughly correspond to the sections of the RTCP packet itself. If mtrace
data is available (the node has been traced at least once), a fourth section with mitrace data is also

displayed. Figure 2 shows a sample statistics window. A window has all of the following parts:

e The first section is the report header. This contains the source’s host name, IP address and
port, and a timestamp of its receipt at the local host.

e The second section is the source description. This includes various textual information about
the packet sender. The most commonly transferred values are the canonical name, email
address, the person’s name, and the tool used.

e The third section is the report block. There may be a variable number of report blocks from
0 to 32. Each report block corresponds to a single received data stream. If there is a single
source, there will only be one report block. These report blocks may appear in any order the
transmitting tool chooses. No report blocks will be sent if all the sources in the session have
ceased transmitting, or if the receiver has lost all connectivity (either due to a total failure
or heavy congestion). The most important data in the report block is the fraction of packets
lost. This value is an an eight bit number representing the fraction of RTP data packets
received out of 256 since the last report was sent. This fraction is calculated as the number of
packets lost divided by the number of packets expected as determined by the RTP sequence
numbers.

e The fourth section is the mtrace block. If an mitrace has been successfully executed, statistics
are displayed including the timestamp that the mirace was started and completed, the receiver
that was being traced, and whether the trace was successful.

14

128.111.52.15/41251 | Nare;| David Makofske (ICSE)

S| 384081951 . Email:| davidm@cs.ucsbedu

1| Sat Feh 27 23:47:34 PST 1839 = vat—4.0pre8/Sunds-55.1=sundu

950047272 |

0/256 (0%)

v Sat Feb 27 23:45:10 PST 1353

Sat Feb 27 23:46:45 PST 1999

o

= o
1890469806 | -

=

Figure 2: Receiver statistics from RTCP and mtrace data.

Pruning and Expanding Nodes. Routers within the tree can be hidden or expanded to create
a custom tree view. This is useful if a user is only interested in the traffic within a subset of the
multicast tree. After a router has been pruned from the window, the router above will display a
small green bar along its base, visually indicating that there are routers and receivers below which
are not visible. On routers where there are pruned nodes below, their menu option for “Prune” is

replaced by “Expand”, allowing those downstream routers and participants to be re-displayed.

Changing Senders. MHealth is only capable of representing a multicast tree for a single source
at a time. If more than one source is detected in a multicast session (which would be the case
in a many-to-many multicast session like a video conference), the senders are placed from left to
right across the top of the screen. MHealth is not designed to handle multiple sources because each
sender will have its own unique multicast tree to the group’s receivers. Since MHealth can only
display a single multicast tree at a time, it chooses the first source heard as the tree root. For each
additional source displayed to the right of the root, their menu will display an option to “Make
Root”. When this option is selected, the current root and the selected source will swap positions,

and the current tree will be discarded. Every receiver will be returned to their position at the

15

bottom of the window, and mtraces will begin anew to place them into the new tree, rooted at the

new source.

User Mtrace Control. The “Mtrace Next” option can be used on any receiver in the multicast
group. This option alters the normal mirace pattern. Once a group of receivers is identified,
MHealth mtraces them one by one in the order they were detected. When the last group receiver is
traced, the process begins again at the beginning of the receiver list. At any time, if the “Mtrace
Next” option is selected for a receiver (whether it has been placed in the tree or not), it will become
the next node to be traced. The text “Mtrace: SCHEDULED” will be placed inside the node to
indicate the action has been handled. When the currently executing receiver trace has completed,
the scheduled node will be traced. The trace order will then continue back to the node that would
have been scheduled prior to the user intervention. This order is used to preserve uniform handling
of new receivers. This is important both for presenting an accurate representation of the tree but
also for accurate collection of statistics. Only one node may be scheduled in this manner at a
time. If another mirace is scheduled before the prior scheduled one has started, the prior scheduled
mirace will be cancelled, and the text “Mtrace: CANCELLED” will be displayed in the receiver

node.

3.3 Sample Analysis Using MHealth

MHealth provides a fairly quick view of small and medium-sized trees. As an example of analysis
that can be performed with archived MHealth data, we present results collected during one week in
December 1998. During that week, both the 43rd Internet Engineering Task Force (IETF) meeting
and NASA TV were being broadcast. Our goal in using MHealth was to observe its ability to
quickly, efficiently, and effectively trace a medium-sized group. We also used the results to observe

the stability of the multicast forwarding tree used by these groups.

Over the two week period that we used MHealth, receivers were traced in an average of 41
seconds. Also, 19% of the total trace attempts failed completely. In attempting to understand why
these traces failed, we believe that there were at least two primary reasons. First, mtraces failed due
to older routers which do not implement the proper functionality. Second, congested routers place
a low priority on responding to mirace queries and may not respond within the timeout period. Of
course, the other main reason why mtraces could have failed is in routing or forwarding problems.

In these cases receivers likely were not seeing the group’s traffic.

As an example of the kinds of post-event analysis that can be performed, we used the archived

MHealth data to study the number of distinct routes for each group receiver. Figure 3 shows the

16

results from this analysis; two data sets are included. We sub-divide each set of results into two
types. Because of the way MHealth works and the variability in member lifetimes, some receivers are
only traced once while others are traced numerous times. This typically happens when a receiver
is only part of the group for a short period of time. In such a case, a receiver will only have one
possible route. Therefore, for each data set, there are two graphs. The left graph includes all
receivers, and the right graph eliminates these “singly-traced” receivers, called long-lived hosts,
from consideration. Results show that a large number of receivers for both the IETF and the
NASA data sets had a significant number of alternate routes; some even as high as 14 different
routes over the course of a week. In the right graph approximately 70% of IETF group members and
45% of NASA group members had at least one route. One possible reason for the unusually high
route variability for the IETF session was because network engineers were testing new inter-domain

protocols and made changes to the local topology several times. Additional analysis is beyond the

scope of this paper and is left to future work.

o Routes for All Hosts -- IETF o Routes for Long-Lived Hosts -- IETF
~ ~
—— Audio | Audio
o e vVideo | | e Video
o | o |
sw \ 2w
=] \ =]
(@] T\ (@] b
(&} \ O
T | T | \
o | SN o | [N
— —
©1 3 5 7 9 11 13 ©1 3 5 7 9 11 13
o Routes for All Hosts -- NASA o Routes for Long-Lived Hosts -- NASA
< <
—— Audio —— Audio
o L Video o / Video
o™ ™
< 1<
> >
OO OO
°R R |
[%2) %) \
o o \
I T \
o o N
— —l \
©1 3 5 7 9 11 13 ©1 3 5 7 9 11 13
Distinct Routes Distinct Routes

Figure 3: Number of distinct routes recorded for each group member. Breakdown by data type
(IETF/NASA) and number of traces per host (All/Long-Lived).

17

4 Evaluation of the MHealth Tool

MHealth provides important functionality for monitoring multicast groups, but the question is
whether MHealth works well enough to be an acceptable solution for network administrators. In
answering this question, the three most important issues were determined to be MHealth’s scala-

bility, its granularity of data, and its overhead.

4.1 Scalability and Granularity of Data Collection

MHealth has a number of critical scalability issues. The most important of these are associated
with the collection tools themselves. Both RTCP and mirace fall short of providing the actual data

needed.

RTCP. Fewer RTCP packets per participant are sent as group size increases. This prevents
overwhelming a large multicast session with control data. Because the packet loss information
included in an RTCP packet covers all data received since the last RTCP packet sent, no period
of time will be missed. However, the granularity of the data collected will be reduced. As a result,
although MHealth will receive RTCP packets at roughly the same rate regardless of group size, the

frequency of the updates for each individual receiver decreases.

Another major RTCP concern is whether the packets will actually be received at all. There
are a number of potential reasons why this issue needs to be considered. First, RT'CP packets are
over UDP, and therefore unreliable. These packets can potentially be lost and will likely be lost in
highly congested networks. Second, RTP tools operating behind a firewall may not be able to get
any of their control packets to other group members. Finally, there are some streaming media tools
that do not implement RTP. In fact, some tools which do implement RTP do not implement RTCP
or fail to implement it properly. The net result is that sometimes the worst performing group
members have the hardest time telling the group of their performance problems. While RTCP

meets its design goals, it falls short as an accurate accounting tool.

Mtrace. Mtrace has similar scalability problems. Tracing a route takes a certain length of time
to complete (averaging approximately 41 seconds during one two-week test). Since the receiver
list is sequentially traversed, the larger the list of receivers, the more time elapses between mitrace
attempts. And again, congestion problems in the network will cause traces to fail. No information

will be provided for group members whose network problems need to be addressed.

18

It is not necessarily clear what can be done to address these scalability issues. RTCP or any
application-level feedback needs to reduce its granularity as the session membership grows. Unless
some management station is configured and capable of receiving hundreds or thousands of messages
per second, multicast feedback will not scale. Mirace data collection can be enhanced by executing
multiple mtraces simultaneously, but then there is a risk of adding too much overhead to the routers.
There may be some methods to reduce the mtrace overhead by doing more intelligent tracing. This

topic is addressed more in the next section and in future work.

4.2 The Overhead of mtraces

The overhead of tracing a multicast session’s topology in a repeated and automated way is a
potential concern. Every successful mtrace requires a response from every router along the path
from the receiver to the source. There are two concerns about this type of overhead. First, there
are concerns for a single MHealth monitor running for a group. Second, the concern is even greater

for a single group that has multiple or many MHealth monitors running.

Single MHealth. If the session participants are reasonably distributed (meaning that a large
number of them do not share the same last hop router), successive mtraces initiated by MHealth
will be distributed throughout the topology. This means that the routers closer to the leafs in
a reasonably distributed group will not be required to respond to repeated mtrace requests. The
larger concern, however, is for the routers closer to the source, especially the first hop router from
the source, which must respond to every mirace. For these routers, the interval between when they
must respond to mirace requests is directly proportional to the time it takes to complete an mirace.
A valid concern is that the frequency with which these routers must respond to mitrace packets in
addition to their normal unicast and multicast routing duties may actually cause more congestion.

Two potential solutions are:

1. By design, mirace IGMP packets may be ignored when the router is under heavy load[5].
This should prevent mirace from overloading a router in most cases. However, it would be
poor design for a network monitoring tool to rely on router robustness to prevent congestion.
One possibility is to apply an exponential backoff of the frequency of mitraces when router
congestion is detected, at the expense of trace information.

2. Another approach is to only trace from the receiver to the boundary of the known tree instead
of all the way to the source. A full mirace would be run back to the source periodically, but
less frequently. This would allow the tree topology and statistics to still be updated, but
would reduce the frequency of trace updates on the portions of the tree closer to the source.
This approach is discussed further in the future work section.

19

Multiple MHealths. Another perspective that must be considered is multiple copies of MHealth
running simultaneously for the same session. Other than requiring a setuid of root for running the
mitrace tool on Unix systems, there are no limitations to running MHealth on any session. Since we
have released MHealth as a freeware tool, the possibility exists that many copies of MHealth could
be run simultaneously on the same session from different locations without knowledge of each other.
In an extreme case of a small number of participants and/or a large number of MHealth users, every
router in the tree could potentially need to respond to mitrace requests on an almost constant basis.
The approaches for reducing mitrace congestion discussed from a stand-alone perspective above
could be applied in this situation as well. Two additional solutions also have been considered. The
first is to integrate MHealth into a web browser and use a single, central collection point but then
distribute results to interested sites. The second is to make MHealth passive and collect statistics

by listening to others conducting traces. Both of these schemes are described in the next section.

5 Future Work

The items listed in this section are proposed from the perspective of offering criticisms about
MHealth and then offering potential solutions. While not perfect, MHealth offers a valuable in-
tegration of existing collection tools and visualization techniques. In listing the most common
problems, the majority have to do with the overhead of mitraces and the problem of having multiple

instances of MHealth running for the same group at the same time.

5.1 Web Integration

One of the best ways to reduce the overhead of doing an mirace in a multicast session is to limit the
number of people who are doing mtraces. One way to do this is to only have a single user actually
running the MHealth program, and have that user create a display of the MHealth data on a web

site. Other interested parties would simply access the data that way.

An implementation of this was attempted using a Java applet and tested during the 42nd ITETF
in August 1998. When the Java applet was loaded into the web browser, it contacted the instance of
MHealth via a unicast TCP socket. Due to Java applet security restrictions, the MHealth controller
was required to run on the same machine as the web server. The MHealth application would then
transfer a serialized copy of the entire tree structure and all of its associated data to the Java
applet. The applet would display the graph in an identical fashion to the application itself. The

applet maintained full interactivity, allowing clicking on nodes for RTCP and mirace statistics, and

20

the pruning and expanding of nodes. A “refresh” button in the applet recontacted the MHealth

application to receive a new snapshot of the data.

Although the applet worked well in a controlled environment with small trees and few requests,
deployment testing proved this approach to be unscalable. As the quantity of tree data and the
number of requests increased, both the MHealth application and the applets either crashed or
displayed erratic results. In addition, the variety of operating systems, browser versions, and Java
versions created a number of bugs that did not occur when the Java virtual machine versions and

implementations were carefully controlled.

As an alternative to an active Java applet, another approach that has been considered is the
generation of a GIF or JPEG image of the MHealth tree. This image would be placed in a web page
and updated frequently. The drawback is that interactivity and additional information requests
would not be supported. This may or may not be an acceptable alternative for users, but it does

offer a nice tradeoff in that simplified functionality reduces complexity.

5.2 Passive Mode MHealth

One interesting solution for the problem of of multiple MHealth tools running for the same session
is to utilize passive miraces. The results of most mtraces are multicast onto a well-known multicast
address. A passive mirace would not send an mirace Query, but promiscuously listens for an mtrace
which matches the needed query. An implementation of MHealth which uses passive mtraces could
have an active and a passive mode. Passive mode would be the default, and an MHealth process
would listen for any mirace that matched one of the mitraces it would need to know about. As long
as needed mtraces were being received, MHealth would stay in passive mode. If no relevant mtraces
were heard after some (possibly random) timeout period, MHealth would enter active mode and
begin sending mtrace queries. In theory, this would create a single “leader” MHealth process that

would send queries, and the other MHealth processes would remain passive.

5.3 Total Mtrace Control and Partial Tree Tracing

Another MHealth optimization would be to integrate the mitrace functionality entirely in the Java
application. This would be an effective alternative to the current method of parsing the output from
the existing mirace tool. Reliability would be greatly enhanced and MHealth would have grater
control over traces. Additional features such as a separate window for watching trace activity could

also be added.

21

Tighter trace control would also allow for partial tree tracing. In order to reduce overhead,
traces could be initiated from the receiver into a known portion of the tree, rather than completely
to the source. This would create a less up-to-date tree at the nodes closer to source, but would
reduce IGMP query overhead at the source. Periodic traces could be done all the way to the source

in order to update the nodes closer to the root.

5.4 Customizable Trace Behavior

MHealth could benefit from a more flexible trace scheduling algorithm. Currently, users are limited
to the selection of the next node to be traced. Additional functionality might allow the user to
choose a scheduling heuristic. For example, a user might want mtrace to focus on receivers which
have not yet been added to the tree, or the user could focus on giving more attention to dealing
with problem cases. Our log statistics showed that, on average, only 60% of the total number of
unique IP addresses discovered with RTCP packets stayed in the session long enough to attempt at
least one trace. Often what happened was a new user joined the group but left before the user could
be traced and added into the tree. This suggests that tracing new members first would improve

the breadth of data collected.

5.5 Session Playback

One limitation to MHealth is that the display only provides a real-time snapshot of activity. While
this is useful for real-time monitoring, it limits the flexibility of post processing and visualization.
An enhancement would be the ability to replay a logged MHealth session. Since all of the data used
to draw the tree can be logged (the RTCP packets and the resulting mitraces), it would be possible
to watch how the multicast tree changes over time. This would be done after the session is over,
and would utilize “time-lapse” playback. This would be useful for loosely observing group and tree

behavior over time, and also for debugging problems after a session had ended.

6 Conclusion

This paper first points to the advantages of multicast as a paradigm for improving bandwidth
usage, especially for broadcast-style, streaming audio and video traffic. Multicast is growing in
popularity, and Internet deployment efforts have been growing as well. There is a clear need for
tools to monitor multicast traffic, diagnosis faults, and analyze traffic flow. This need is often cited

as one of the most significant barriers to widespread multicast adoption.

22

MHealth is a graphical, near real-time multicast monitoring tool developed to address multicast
traffic management needs. MHealth allows a user to view and collect data about the health and
topology of a multicast tree. An important aspect of MHealth is its ability to integrate data from
multiple sources and provide a more comprehensive view of multicast data flows. Despite concerns
about scalability and granularity of data collection, MHealth has been shown to be a useful tool for

collecting, processing, and archiving topology data.

References

[1] D. LeGall, “MPEG: A video compression standard for multimedia applications,” Communi-
cations of the ACM, pp. 47-58, April 1991.

[2] K. Almeroth, “The evolution of multicast: From the MBone to inter-domain multicast to
Internet2 deployment,” IEEE Network, January/February 2000.

[3] C. Diot, B. Lyles, B. Levine, and H. Kassem, “Requirements for the definition of new IP-
multicast services,” IEEE Network, January /February 2000.

[4] K. Almeroth, “Managing IP multicast traffic: A first look at the issues, tools, and challenges.”
IP Multicast Initiative White Paper, August 1999.

[5] W. Fenner and S. Casner, “A ‘traceroute’ facility for IP multicast.” Internet Engineering Task
Force (IETF), draft-ietf-idmr-traceroute-ipm-*.txt, August 1998.

[6] H. Schulzrinne, S. Casner, R. Frederick, and J. V., “RTP: A transport protocol for real-time
applications.” Internet Engineering Task Force (IETF), RFC 1889, January 1996.

[7] A. Swan and D. Bacher, rtpmon 1.0a7. University of California at Berkeley, January 1997.
ftp://mm-ftp.cs.berkeley.edu/pub/rtpmon/.

[8] K. Almeroth, Multicast Group Membership Collection Tool (mlisten). Georgia Institute of
Technology, September 1996. http://www.cc.gatech.edu/computing/Telecomm/mbone/.

[9] J. Robinson and J. Stewart, MultiMON 2.0 - Multicast Network Monitor, August 1998.
http://www.merci.crc.ca/mbone/MultiMON/.

[10] A. Rubens, C. Ravishankar, D. Thaler, A. Adams, B. Norton, and J. DiGiuseppe, “Merit
SNMP-based MBone management project.” http://www.merit.edu/~mbone/.

[11] M. Handley, “An examination of MBone performance,” Tech. Rep. ISI/RR-97-450, Information
Sciences Institute (ISI), University of Southern California (USC), January 1997.

[12] M. Yajnik, J. Kurose, and D. Towsley, “Packet loss correlation in the MBone multicast net-
work,” in IEEE Global Internet Conference, (London, ENGLAND), November 1996.

[13] K. Almeroth and M. Ammar, “Multicast group behavior in the Internet’s multicast backbone
(MBone),” IEEE Communications, vol. 35, pp. 224-229, June 1997.

[14] D. Clark and D. Tennenhouse, “Architectural considerations for a new generation of protocols,”
ACM Sigcomm, pp. 200-208, September 1990.

23

[15] J. Nagle, “Congestion control in IP/TCP internetworks.” Internet Engineering Task Force
(IETF), RFC 896, January 1984.

[16] D. Waitzman, C. Partridge, and S. Deering, “Distance vector multicast routing protocol
(DVMRP).” Internet Engineering Task Force (IETF), RFC 1075, November 1988.

[17] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, G. Liu, and L. Wei, “PIM architecture
for wide-area multicast routing,” IEEE/ACM Transactions on Networking, pp. 153-162, Apr
1996.

[18] J. Moy, “Multicast extensions to OSPF.” Internet Engineering Task Force (IETF), RFC 1584,
March 1994.

[19] W. Fenner, “Internet group management protocol, version 2.” Internet Engineering Task Force
(IETF), RFC 2236, November 1997.

24

