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Abstract— There exists a huge demand for multi-
media goods and services on the Internet. In this
paper, we develop an analytical framework to price
such services in the Internet. As a first step, we
consider a system where a server handles requests
for a service on a First-Come-First-Served (FCFS)
basis. We develop a model where customers can
refuse the service based on their capacity to pay and
their willingness to do so. We show that charging a
flat price maximizes the expectation of revenue and
derive the optimal price for the analytical frame-
work we develop. We also discuss how resource
constraints can prevent achieving this maximum
expectation and analyze pricing strategies for such
situations.

I. INTRODUCTION

The Internet is seeing an explosive growth in com-
mercial activities. Products ranging from cameras to
cars are being sold in the Internet. At the same time,
services like video-on-demand, though touted as killer
applications, have failed to take off. However, content
delivery in general is a major activity and is growing
at a fast rate. For instance, downloadable software is
highly popular on the Internet. One can think of sce-
narios where customers can download music, movies
and even books after online transactions. In the In-
ternet, a service provider can charge different prices
from different customers for such software, as long as
the customer agrees to the price. The variability in
price can be attributed to the time of day at which
the requests are made. At the customer end, price
determines the decision to purchase the product or
service. The customer can accept or reject a price
based on his/her capacity to pay and willingness to
do so. Choosing the right price is therefore of great
importance to maximize revenue. This paper devel-
ops an analytical framework for pricing of services in

such a setting.

The Internet is an example of a market where there
is a potentially infinite supply of goods and services.
The only limitation in supply is due to lack of dis-
tribution resources at the retailer or service provider.
Let us consider an illustrative example. Consider a
service provider selling downloadable CDs. The num-
ber of CDs that can be downloaded from the web-site
within a given time frame is limited by the bandwidth
and server resources available. Furthermore, the re-
sources available cannot be arbitrarily increased. This
is because, the demand (or request arrival process)
cannot be easily predicted. For instance, a very pop-
ular music album available at an exclusive web-site
may increase demand for a a short period of time,
say a fortnight. Once the initial popularity wanes,
demand (and hence request arrival rate) will drop.
Acquiring high capacity links and server resources to
meet the demand may therefore not be a practical so-
lution. At the same time, short-term acquisition of
server resources and bandwidth may not be possible.
An intelligent pricing strategy on the other hand will
help maximize revenue under a given set of resource
constraints.

Under specific assumptions of user behavior and a
system model, we analyze pricing mechanisms which
maximize ezpectation of revenue. We use the term
expectation in the statistical sense, because the rev-
enue generated depends on a probabilistic user be-
havior model. To illustrate the probabilistic nature of
user behavior, let us consider an example. Consider
a teenager with $15 as pocket money at a video-game
parlor. The latest release of a hit video-game is very
attractive to him, but whether or not he chooses to
play the game depends on the price associated with
the game and the money he has with him. He may



be very likely to play for $5, but not for $14. He may
decide to wait for another month when the game is
not so new and the price falls. But, if the price is
greater then $15, he cannot play even if he wishes to
do so. There is a probability associated with his deci-
sion to play based on the price and his capacity to pay.
We can see a direct correlation between the example
described here and purchasing goods/services on the
Internet. In general, the probability that a customer
buys the service decreases with price and increases
with his or her capacity to pay.

Summarizing our discussion above, the delivery of
content depends on three factors—resource availabil-
ity, customer capacity to pay and customer willing-
ness to pay. In this paper, we analyze pricing mecha-
nisms for a FCFS system with finite resources under
a Pareto distribution of customer capacity to pay and
a probabilistic model for user willingness to pay the
quoted price. We show that charging a constant price
will maximize the expected revenue for any user will-
ingness model in which user willingness decays with
increasing price. We derive the constant price for the
user willingness models we use in this paper. We also
discuss how resource constraints can prevent achiev-
ing the maximum expectation of revenue and formu-
late pricing strategies for such situations. Our work
is based on a video-on-demand server, but it is suffi-
ciently general to be applied to other forms of content
and services on the Internet.

The rest of the paper is organized as follows. We
describe our basic system model used in this paper in
Section 2. We formulate the theoretical expectation of
revenue in Section 3. In Section 4, we discuss pricing
strategies when resources are constrained. In Section
5, we discuss generalizations of the framework devel-
oped in this paper. We conclude the paper in Section
6.

II. SYSTEM MODEL

We consider a system where requests are satisfied
if resources are available and the customer agrees to
pay the quoted price. Resources are modeled as log-
ical channels. Every request which is satisfied occu-
pies a channel for some finite amount of time. For a
video-on-demand server we can think of the channels
as the number of movies that can be served simulta-
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neously. In this paper we do not focus on how the
channel is allocated or how an allocated channel is
managed. These issues have been treated in detail in
earlier work [1], [2]. We mainly focus on the interac-
tion between the system and the customer before a
channel is allocated. The sequence of actions result-
ing in content-delivery is depicted in Figure 1. In this
paper, we assume that there is no distinction or classi-
fication in the service. For a video-on-demand system,
this can be thought of as a model in which all movies
(both popular as well as unpopular) are treated uni-
formly, i.e., price is independent of the popularity of
the movie. The framework we develop can be suit-
ably modified to handle the general case of multiple
classes of service offered by the same service provider.
We defer a discussion on this subject to later sections.

Economic theory has established that there are a
large number of customers with a small income and
a very small number of customers with a very large
income [3]. It is reasonable to assume that customers’
capacities to spend will follow a similar behavior. Cur-
rently, two probability distribution models — Pareto
and log-normal are used to represent the distribution
of incomes(3], [4]. In this paper, we use the Pareto
distribution to represent the capacity to spend. Every
customer has the capacity to pay based on a Pareto
distribution with two parameters—shape a and scale
b. All customers have capacities at least as large as
b. The shape a determines how the capacities are
distributed. The larger the value of a, the fewer the
people with a very large capacity to pay. The Pareto
density function is defined as shown below:
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Fig. 2. Pareto Density

Figure 2 illustrates the Pareto density function for
different values of shape a, and scale b = 67!. Let
us consider an illustrative example to understand the
Pareto distribution of capacities. Consider a video-
on-demand server. We can expect all customers to
have a capacity to pay at least some money for the
movie. We call the largest such amount that can be
paid by all the customers as the scale of the distribu-
tion of their capacities and denote it as b. We would
expect most of the customers to be able to pay only
about this amount. There will be very few customers
who can pay a lot more than the scale. This infor-
mation is captured by the shape of the distribution,
which we denote as a. The greater the value of a,
the fewer the customers who can pay a lot more than
b. When a — oo, all customers have the same capac-
ity b. For systems like video-on-demand servers, we
would expect the shape to be a very large but finite
number.

Even though customers can spend, they may not be
willing to do so. To adequately describe the willing-
ness of customers to pay, we define a family of proba-
bility functions. Consider an arbitrary customer with
capacity x. We denote his/her decision to purchase
the service, by the random variable T which can take
two values—1 for accept and 0 for reject. As discussed
in the example in the previous section, the probabil-
ity that the customer accepts the price 1, denoted by
P{Y = 1| 9} depends on his/her capacity x, and
the price 1. In this paper, we work with a simple
model, where P{Y = 1 | ¢} is defined as shown in
Equation 2:

1For, b=67 and o = 3, the mean of the Pareto distribution is
100.
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By varying the parameter ¢ in Equation 2, we can
make the willingness as elastic as desired. The higher
the value of §, the more willing are customers to spend
money. We show three different willingness models for
a customer having capacity 100, with § values 2, 3 and
4 respectively in Figure 3. As can be seen, the model
with § = 4 makes the customer much more willing to
spend money than in the case of the other two mod-
els. In fact, as ¢ increases to around 4.0 or greater, the
willingness begins to resemble a “step-function”, i.e.,
the customer is willing to pay as much as his/her ca-
pacity to pay. Even though different customers shall
in reality have different degrees of willingness, in this
paper we shall assume that all customers have the
same degree of willingness. This makes the analysis
simpler while at the same time illustrating the overall
customer behavior.

Typically, economic analysis of customer behavior
involves utility function models. In these models, it
is assumed that every customer associates a specific
value to the product and the price is compared with
this value. The model we use in this paper can be
shown to be similar to one such utility function based
model. We chose our model of customer behavior in-
stead of a utility function based model because it is
difficult to quantify the value a customer associates
with the content. Choosing a probabilistic model on
the other hand makes the analytical framework eas-
ier while at the same time capturing typical customer
behavior.



Notation | Description

Shape of Pareto distribution
Scale of Pareto distribution
Decision to purchase (0 or 1)
Elasticity of willingness
Revenue per customer

Total revenue

Price

Capacity of arbitrary customer
Request arrival rate

Number of channels

Mean service time

System Utilization

T A > AL xR

TABLE I
SyMBOLS USED

III. EXPECTATIONS OF REVENUE AND
ACCEPTANCE

In this section, we discuss the dynamics of the user
capacity model and user willingness model and how it
affects revenue. For the purposes of our analysis, we
have used a number of variables and terms. Table I
lists our notation for the variables.

Intuitively, if we do not know how much customers
are capable or willing to pay, it makes sense to charge
a constant amount of money from each customer.
This is because we have no means of predicting which
customer to charge a high price and which a lower
price. By choosing a constant price we maximize the
chances that they accept. We have proven this intu-
ition to be correct. The proof assumes that at high
prices (all prices greater than an arbitrary price de-
noted by 1), the probability that a customer will
purchase the service is zero. This is a reasonable as-
sumption since every customer has only a finite ca-
pacity to pay. For instance, 1o, can be assigned the
asset value of the richest person on earth. This means
that the expectation of the decision to purchase given
price 1, denoted by E[Y | 1], is zero for i greater
than or equal to 1.

Theorem 1: If the expectation of the decision to buy
given price ¥, E[Y | 1], i8 0 V 9 > 1), then the ex-

pectation of revenue per customer, E [y], is maximum
when 1 is a constant.

Proof Outline: We shall assume that E[Y | ] is de-
fined V1) € [0,00). Suppose that different prices are
charged with a probability density py. Then the ex-
pectation of revenue per customer is given by:

El] = [ YE[Y | ¢lpe(y)dy
= U= VB [Ylps(p)dp  (3)
+ Jyo WE[Y | Ylpu()di.
Since E[Y | 9] = 0,V9 > 1), the integral defined

above is non-zero only over a finite interval [0, ¥).
Since E[Y | 1] is defined at all points in this interval,
Fmaz € [0,%00) at which the function YE[T | 4] is
maximum. If there are many such points, we arbi-
trarily choose one of them. The expectation of the
function $E[Y | 9] is maximized if the probability
density at ¥4, is the highest. This will be the case
when py is the Dirac delta function §(¢) — ¥pqez)- In
other words, the expectation of revenue is maximized
when 1) has a constant value 9,,,4,. O

We now derive an expression for E[T | 4], for a
Pareto distribution of customer capacities and the
willingness model described Equation 2. We shall as-
sume that the shape a of the Pareto distribution is
greater than or equal to 1. This is because, when «
is less than 1, Pareto distributions do not have a fi-
nite mean. E[Y | 9] denotes the mean rate at which
customers accept the price ¢y for the service. All cus-
tomers are assumed to have the same willingness pa-
rameter, denoted by .

Theorem 2: For a Pareto distribution of customer
capacities, with shape o and scale b, « > 1, b > 0, and
the customer willingness defined in Equation 2, the
expectation of the variable T given price ¢, E [T | ]
is as follows.

8
_ o
5 (5)
)
)

1 (4
E[T|¢]={ ut
ars )



Proof Outline: Let x denote the capacity of a cus-
tomer and f,(x) the probability density at x. If the
price 1y < b, then all customers have the capacity to
pay that price. Therefore, the expectation of T, given

1 is:
| Fob0P{x = 1] ). )

[T (-G

When the price ¢ > b, then some of the customers

(6)

do not have the capacity to pay this price. According
to Equation 2, the probability of purchase is zero for
all the customers whose capacity to pay is less than
the price 1. Therefore, when 1 > b, the expectation
of T, given v is:

/ " £ 00P{Y = 1] $}dx. (7)
= [} folx)0dx

b U500 (1 (2)) ax
B 0 b W 4

= et (1 — (;) )dx.

The integrals in Equations 6 and 9 can be evaluated
using the standard rules of integration to obtain the

(9)

expression in Equation 4. O

Theorem 2 tells us that the mean rate of acceptance

is at least aLM if the price is less than b, and at most

a%—& if the price is greater than b.

Using the expression in Equation 4, for a Pareto
distribution of customer capacities, the expected price
acceptance rate, E[T | 1], will be very small but non-
zero even for very large values of 1. Theorem 1 can
therefore not be applied to this distribution of capaci-
ties. However, it can be shown that even for a Pareto
distribution of capacities, the expectation of revenue
is maximized for some constant price ¥mq;. We omit
the proof for reasons of space.

For a constant price v, the expected revenue per
customer, denoted by E[y | ], is given by the prod-
uct of the price ¥ and the expectation of the decision
to purchase, E[Y | ¢]. Note that E[Y | 1] denotes
both the expectation of the decision to purchase for
an arbitrary customer as well as the mean rate at
which customers accept the price. Using Equation 4,
the expression for revenue per customer can be writ-

ten as:
Ely|¢] = 9E[T|4y] (10)
@b—sz(ﬁ)é 0<$<b
- afd Ab) 0 U= =)
vaks (§) 5 ¥>0

To find the price at which revenue is maximum, we
differentiate the expectation of revenue given price,
E[y | 9], with respect to the price 1, and solve the
equation so obtained when the first derivative is zero.
Using standard methods of calculus, it can be easily
shown that the expecation of revenue per customer

1
is maximum when 1 is equal to [%] * b. Figure 4
shows the expected revenue per customer as a function
of price for different willingness elasticity parameters,
a Pareto shape of 3.0 and scale 67. The price at which
the expected revenue per customer is maximum is also

shown. It can be verified that the expected revenue is

1
indeed maximum when the price is [%] ® b. Figure

4 also shows how the acceptance rate, E[Y | 1] varies
with price, 1, for the same capacity distribution. It
can be verified that the expectation of revenue per

customer is maximized when the acceptance rate is

0
0+1-

IV. MAxXxiMmuM REVENUE UNDER RESOURCE
CONSTRAINTS

In the previous section we derived an expression for
the expected revenue per customer. In this section,
we discuss how in a FCFS system, the maximum ex-
pectation of total revenue is affected by resource con-
straints. We then derive an expression for the optimal
price which maximizes total revenue under resource
constraints.

We begin our formulation by defining system uti-
lization for a FCFS system. System utilization is the
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relative fraction of time for which the channels are
busy servicing requests. Let A be the arrival rate of
requests, n the number of channels, and d, the average
time to serve a request. Then, the system utilization,
p, is defined as the ratio of the number of requests
entering the system per unit time to the number of
serviced requests exiting the system per unit time.
The mathematical expression for system utilization,
when we charge a price v, is given by:

_AE[Y |4]d
S —

p(¥) (12)

Note that the system utilization is bounded above
by 1. This upper bound reflects resource constraints.
We now discuss how this upper bound on system uti-
lization can affect the expectation of total revenue.

Acceptance Rate and Utilization
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Let ¥4 be the optimal price that maximizes the
expected revenue per customer. E[Y | ¥4z is the
rate at which customers accept the price ¥,q,. Effec-
tively, in a time interval t, A E[Y | ¥mas] customers
enter the system. Thus the maximum expectation of
overall revenue in time t is given by Y AXtE[Y | Ymaz)-
However, on the average, the maximum number of
requests that can be served by a system with n chan-

nels in a time interval ¢ is %t,

where d is the mean
service time. When AE[Y | tmez|t is greater than
%t, there are more requests entering the system than
can be accomodated. Note that the system utiliza-
tion is greater than 1 when this condition occurs. In
this case the maximum expectation of revenue derived
above cannot be achieved due to resource constraints.
This phenomenon is illustrated in Figure 5. Figure 5
shows how the acceptance rate, E[Y | ¥maz], and the
system utilization for price ¥maz, Pmaz, vary with the
elasticity of willingness, 4, for a system with 500 chan-
nels, a mean service time of 100min and an arrival rate
of 10 requests/min. Also shown, is how p,., varies
with the arrival rate for the same system when the
elasticity, d, is 2.0. The figure indicates that resource
constraints may prevent achieving the maximum ex-
pectation of revenue when either the arrival rate is
high, or willingness to pay is very high.



Intuitively, we should increase the price when there
is high demand. In fact, we should increase the price
to such an extent that only as many customers accept
the price as can be accomodated by the system. We
show that this maximizes total revenue. In our proof,
we use the notion of concave functions. Concave func-
tions have only a global maxima and no local maxima.
A function is concave with respect to a variable, if its
second derivative with respect to that variable is non
positive. The revenue function derived in this paper
is an example of such a function. It has only a global
maxima and no local maxima. This means that as we
increase price, the revenue increases upto a certain
point (the global maxima) after which it decreases
monotonically.

Theorem 3: If number of customers accepting the
optimal price exceeds the system capacity, then the
revenue is maximized for the highest price which re-
sults in maximum predicted system utilization.

Proof Outline: We derive a simple expression for
the expectation of revenue per unit time, E[I" | 9], in
terms of system utilization p and price, :

E[C[§] = ME[Y |yl (13)
= M)’ 39 (14)
= ppn (15)

s mn
Since 4

is a constant, the expectation of revenue
is proportional to the product of the system utiliza-
tion and the price 1. The system utilization is a
monotonically decreasing function of price. The ex-
pectation of revenue is a concave function of price be-
cause its second derivative with respect to v is non-
positive. When the number of customers accepting
the optimal price ¥4, e€xceeds system capacity, i.e.,
AE[Y | Ymaz) > 5, p(¥mas) is greater than 1. In this
case, we want to find that price ¢ at which E[I" | 9] is
highest and p()) less than or equal to 1. Since p(%)) is
monotonically decreasing, this means that system uti-
lization will decrease when we increase the price. In
addition, since E[I" | 9] is concave, it is monotonically
decreasing for all 1 greater than 1,,,,. Therefore, to
the right of ¥maz, both p(v) and E[T" | 9] are decreas-
ing. Clearly, the highest revenue while ensuring that
p(1) is less than or equal to 1 is earned when p(v) is

equal to 1. O

Using Theorem 3, when the arrival rate exceeds sys-
tem capacity, the maximum revenue is earned when
7%+ This is obtained
by substituting a value of 1 for system utilization in
Equation 12 and solving for E[Y | ¢]. Using this ac-

ceptance rate, we can compute the price that needs to

the predicted acceptance rate is

be charged using Theorem 2. We summarize this in
the following theorem, which we state without proof.

Theorem 4: Let customer capacities be Pareto dis-
tributed with shape o, @ > 1, and scale b. Let their
willingness to pay be as defined in Equation 2. Con-
sider a system with n channels serving content with
mean service time d. Let A be the request arrival
rate. The expectation of revenue for the system is
maximum when the content provider charges a price

Yarax defined as follows:

1
J |9 [
[#5s] RN = )

— a+d n\|é é n J
Yrmax = [(—I )(1—a)]jb , (5-|-_1>ﬁ2(a+6)
Add a 9 9 n
[n(a+5)] b FH> G M

(16)

In summary, the analytical framework developed in
this section enables us to set an optimal price based on
the characteristics of customer behavior, the system
resource constraints and the request arrival process.

V. DISCUSSION

In this section, we place our framework in the con-
text of the current Internet infrastructure and service
model. Our framework focusses on a video-on-demand
system, but is sufficiently general to be applied to
other forms of content. A key issue relates to ser-
vice class differentiation. How can the framework be
extended to handle multiple classes of service? Dif-
ferent classes of service will target different classes of

customers with different capacities and willingness to




pay. Thus, we can model this scenraio by consider-
ing different user capacity distributions, with different
shapes and scales—one for each class of service pro-
vided. Corresponding to these classes, the elasticity
of willingness parameter, ¢, will also be different.

Another advantage of using different elasticity of
willingness parameters is that, it will account for pop-
ularity of content. Customers who want hot movies
will be more willing to pay more money. Thus, the
willingness elasticity parameter for such customers
will be high. Similarly, customers requesting cold
movies can be modelled with a small elasticity of will-
ingness.

A drawback of the model is that the exact values of
the elasticity of willingness for different classes of ser-
vice or movies may not be known. Similarly, the exact
values of the parameters of the customer capacity dis-
tribution are difficult to obtain. To address this prob-
lem, one can develop algorithms which perform prob-
ability experiments to estimate these parameters. We
have developed such algorithms in some of our later
work[5], [6].

Another potential drawback of our framework is
that we assume the all customers subscribing to the
same class of service or movie have the same willing-
ness parameter. We are currently developing a model
where the customers willingness parameter is expo-
nentially distributed. Our analysis indicates that the
results obtained using this model will not be signifi-
cantly different.

VI. CONCLUSIONS

In this paper, we focussed on pricing models for
a content delivery system. We introduced the idea
of probabilistic user behavior and analyzed its impact
on revenue. We developed a theoretical framework for
maximizing revenue assuming a FCFS content deliv-
ery system. Specifically, we developed pricing strate-
gies for conditions of high demand as well as for low
demand. An interesting application of Theorem 2,
which relates price and acceptance rate, is to use price
to control system utilization. An eventual goal of our
work is to allow customer and provider to negotiate
the price. Theorem 4 provides a baseline for control-
ling the negotiation. The impact of batching, con-

tent popularity, and temporal changes in user behayv-
ior need to be studied in greater detail.
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