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ABSTRACT

Pervasive computing devices such as Personal Digital Assistants
(PDAs) and laptop computers are becoming increasingly ubiqui-
tous. The future promises even more advanced devices such as
digital watches, jewelry, and even clothing. However, as perva-
sive devices become more widely used for more advanced appli-
cations, their resource limitations are becoming more apparent. In
this work, we focus on data management and power limitations.
We investigate the benefit of using power-aware schemes to auto-
matically manage content across a collection of devices and pro-
long data availability. We monitor the available energy supply on
each device and migrate content from devices that are in danger of
dying. In our simulated environment, we have found that, using in-
telligent techniques for data management can increase the amount
of time a collection of devices remains usable by over 2 times. Fur-
thermore, our techniques can perform autonomously, independent
of user intervention.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
design, performance

Keywords
energy, small devices, content management

1. INTRODUCTION

Devices such as hand-held Personal Digital Assistants (PDAS)
and laptop computers are becoming increasingly ubiquitous. Users
call upon them to manage their schedules, check their email, main-
tain their address books, and carry out their everyday work tasks.
The future promises even more advanced devices such as digital
watches, jewelry, and even clothing. Users will be able to have in-
stant access to information using nearly invisible technology. The
advent of such devices coupled with the ubiquitous deployment of
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wireless networking technology will enable users to create, man-
age, and access their own content as well as to seamlessly share in-
formation with colleagues and friends or upload and download in-
formation from infrastructure embedded in the environment. How-
ever, as we move toward a vision of completely mobile users with
instant access to information using computers that have been clev-
erly and invisibly embedded into everyday objects such as clothing,
we face a number of challenges.

In particular, as pervasive devices become more widely used, and
as future generations of devices continue to promise to be smaller
than the current generation, resource limitations of devices will
have a greater effect on available services. These limitations in-
clude user-centric issues such as ease of management of multiple
devices. They also include resource-centric constraints of CPU,
bandwidth, memory, storage, and especially power.

In this work, we focus on data management and power limita-
tions. We investigate the benefit of using power-aware schemes to
automatically manage content across a collection of devices. In this
context, managing content includes migrating content to the device
where it is likely to be accessed. We make the assumption that
a user is likely to carry, not one, but a collection of devices. By
viewing the collection as a single unit, and managing the resources
available across the collection, we can increase the amount of time
that the collection remains usable. Our evaluation of this idea fo-
cuses on quantifying the benefits in a simulated environment.

We simulate a data management strategy that monitors the re-
maining lifetime of each device in a user’s collection. When the
lifetime of a particular device gets critically low, the other devices
in the collection are polled for their remaining lifetimes. Content
(i.e., data files) the user is likely to access is migrated to the other
live devices that still have a reasonable remaining lifetime. This en-
ables a user to continue to work in the event of complete power loss
on a particular device. We have found that, using intelligent tech-
niques for data migration can increase the amount of time a collec-
tion of devices remains available by over 2 times. Our techniques
have user-centric implications as well. Users can take advantage
of longer device availability without having to explicitly distribute
tasks among devices.

This paper is organized as follows. In Section 2 we discuss
current uses of small devices, motivate the problem of limited re-
sources, and discuss related work. In Section 3 we introduce the
idea of power-aware data management and present the specifics of
our algorithm. We present our simulations and evaluation of data
management in Section 4. We conclude in Section 5.

2. MOTIVATION

The goal of this work is to explore power-aware data manage-
ment across small devices. We argue that pervasive devices often



have resource limitations that can be overcome by using a collec-
tion of devices in a cohesive way. However, using the available
resources across a collection of devices can be a challenge. In this
section, we discuss our target devices and applications, the limita-
tions of these devices, and current approaches that have partially
addressed these limitations.

2.1 Devices and Applications

Pervasive computing devices range from powerful laptop com-
puters to information appliances to computing devices embedded
in everyday objects. In this work, we focus primarily on small, mo-
bile, user-centered computing devices. Current examples of these
devices include laptop computers, PDAs, and cellular telephones.
In the future we imagine other devices such as digital watches or
rings, other jewelry, or clothing [12]. In short, our focus is on de-
vices that a user might carry throughout a day. Although we do
not focus on devices such as embedded sensors that are centered
around the environment rather than the user, we believe that many
of our techniques may be applicable there as well.

As devices become more advanced, the range of applications
they support is ever increasing [19]. In particular, increased disk
space, memory, and bandwidth have enabled small devices to be
used for more advanced, content-driven applications. While the
first generation of PDA devices supported tasks such as calendar
and address book maintenance, newer PDAS support access to text
documents and multimedia content such as audio and video files.
In the next generation, the same functionality may be supported by
a user’s jacket (http://www.media.mit.edu/hyperins/levis/). More-
over, increased connectivity between devices and between users has
promoted more advanced content sharing applications. Today, we
can imagine users on a subway train exchanging sections of the
morning newspaper [14]. In the future, we can imagine millions of
computers embedded in the environment, each gathering informa-
tion and making sure the information is available where it is likely
to be accessed.

Managing information in such a large-scale environment
promises to be a great challenge. In fact, even in a more limited
environment challenges arise. As devices become smaller, a sin-
gle user is more likely to carry a collection of devices. Even today
we see business people who carry a PDA to keep track of appoint-
ments, a cellular phone to speak with colleagues, and a laptop com-
puter to aid in presentations and perform other complex chores. A
high school student might carry an MP3 player to listen to music,
a cellular phone to send messages to friends, and a laptop com-
puter to take notes in class. In the future, the same student may be
wearing digital earrings to listen to music, a digital shirt to capture
her voice and transmit her instant voice message to friends, and a
digital jacket with a keypad to allow her to take notes in class.

To be more specific, imagine a user on an airplane. She picks up
her laptop and starts to modify a document. When the laptop runs
out of battery, she picks up her PDA and continues to modify the
document using the more limited interface. Eventually, the PDA
runs out of battery and she switches to her cell phone. Finally,
when her cell phone runs out of battery she resorts to her digital
watch where she can dictate text using speech recognition. Despite
the small number of devices, managing content in this scenario is
particularly challenging, primarily because pervasive devices have,
and will continue to have, resource limitations.

2.2 Device Limitations

Devices such as PDAs and laptops are becoming increasingly
powerful. The most powerful laptops on the market today rival
desktops of only a few years ago in terms of processing speed,

memory, disk space, and bandwidth. However, battery technol-
ogy is not advancing at near the rate as other resources [5]. Often,
a single battery will only sustain a laptop for a couple of hours or
less under a normal workload.

As devices become more ubiquitous, the power limitation be-
comes even more of a burden. Not only will there continue to be
situations where power is simply not available, even in locations
where power is available, it may be limited. For example, at a dis-
aster site where recovery workers need to store and communicate
information they have gathered, power is unlikely to be available
at all. Alternatively, at an airport where power might be available,
there is no guarantee that an outlet will always be free.

While it would seem intuitive that a user who carries a collection
of devices would be able to accomplish more than if the user carried
a single device, managing and using the collection is often difficult.
Despite redundant functionality, multiple devices often cannot be
used to accomplish the same task. The primary problem is lack
of coordination. Especially with content-driven applications, if the
content a user wants to access is not available on the device where
the user is trying to access it, the task cannot be completed. This
is particularly challenging in a power-limited environment. A user
may have a PDA and a laptop computer that both have a text editing
program installed. However, if a user is composing a paper on a
laptop and the laptop battery dies, unless the user has manually
copied the file, she cannot continue to work on her PDA.

As the practice of carrying multiple devices on a day-to-day ba-
sis becomes more commonplace, creating tools for automatically
managing and coordinating them becomes necessary. The ideal sit-
uation from the user perspective is to accomplish any task on any
device. For example, a task that a user would normally perform
on a laptop should still be possible, even if the laptop’s battery has
died. A generic framework for managing and coordinating devices
should monitor available resources, and perform tasks based upon
knowledge of the complete system. Resources can include CPU,
network bandwidth, disk space, and battery lifetime. In this work,
we focus specifically on strategies for managing data across a col-
lection of devices in a power-aware way. Our goal is to intelligently
monitor power and migrate data such that it remains available even
in the face of a power loss on a particular device.

2.3 Related Work

The concept of managing resources across devices has been
looked at from a variety of angles. The MOPED project [9] pro-
poses aggregation of a collection of devices from the network layer
by using well-connected gateways to communicate on behalf of
other devices. While MOPED primarily seeks to integrate the de-
vices belonging to a single user, a similar project has looked at
aggregating connectivity across a larger collection of devices [13].
From the user perspective, the MPA project [16] addresses aggre-
gation by using an infrastructure that tracks users and chooses the
best device on which to contact them. Finally, Roma [22] manages
data stored across a collection of devices by storing metadata about
all data on a single, portable device. In this work, we are primarily
interested in using power-aware techniques to increase the amount
of time useful data remains available across a collection. We ad-
dress this challenge primarily from the resource point-of-view, not
necessarily the user point-of-view.

From the resource point-of-view, a number of projects have
looked at conserving the resources of small devices. The resource
most often targeted is power. A number of projects have looked
at conserving power across devices from the application point-of-
view [1, 4], the CPU point-of-view [18], the memory point-of-view
[11], and the network point-of-view [10, 20]. Power conservation



has also been addressed from the point-of-view of ad hoc routing
among many small devices [6, 8]. However, conserving power may
not be sufficient in many situations. Eventually, a device running
the most conservative power saving schemes will run out of battery
power. In this work, we focus on extending the availability of data
by intelligent use of power resources across a set of devices. This
can be used alone or in concert with conservation schemes.

3. STRATEGIES FOR POWER-AWARE
DATA MANAGEMENT

In this work, we explore power-aware management of data
across a set of pervasive devices. Our strategy focuses on viewing
the collection of devices as a single unit and managing data avail-
able across them using power-aware schemes. Using this strategy,
we can increase the amount of time that useful data remains avail-
able, even in the face of a power loss on a subset of the devices.
In this section, we look at an overview of the goals and idea be-
hind our management scheme and then discuss our design in more
detail.

3.1 Overview
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Figure 1: An overview of our architecture.

Figure 1 illustrates a high-level view of our architecture. A user
carries a collection of devices (e.g., a Jornada, laptop, and digital
watch). Each device runs a middleware component that is config-
ured such that it knows about the other devices in the collection
and can communicate with them. When one device receives a re-
quest to perform a task, such as uploading a file, that device can
divide the task into subtasks and allocate the subtasks to the appro-
priate devices in the collection. For example, a device may receive
a request to upload a file that is not stored locally. In that case, the
device would pass the request to the device that it knows has a copy
of the file.

This model can apply to a variety of resources. From the CPU
point-of-view, a compute intensive task can be offloaded to the de-
vice with the most processing power. From the bandwidth point-
of-view, the task of downloading a piece of content might be trans-
ferred to the device with the most available bandwidth. Our focus
is on data and power. In particular, we focus on maintaining avail-
ability of data. Such a strategy can include elements such as coordi-
nated data upload/download. However, the main focus of our eval-
uation is on maintaining data availability in a power-constrained
environment.

Figure 2 illustrates an overview of the use model we assume.
Each device in a collection stores some set of files. When a file is
requested from one device, even if the file is not currently available

on that device, the request is serviced by redirecting the request, or
fetching the requested file on-demand. Moreover, even if the file
was originally on a device that has lost power, the file should still
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Figure 2: An overview of our model for use.
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In the most common case, requests will be issued by the user. A
user may want to view, create, modify, or remove content from her
devices. To provide this support, a data management component
should act as a distributed file system. A user should have a com-
plete view of the files available across the collection. If a requested
file is not on the device in use, it should be fetched, on-demand,
from its current location. To implement such a scheme, each device
stores metadata about the files stored on the other devices. Alter-
natively, we could employ a more centralized model such as in the
Roma project [22]. The metadata is updated when changes occur.
When a request is made, the metadata is consulted and the file is
fetched from the appropriate location if necessary.

Similarly, such a scheme can support content exchange with
other users. A collection of user devices may act as a server, pro-
viding content to other users that are within wireless range of the
collection. For example, a group of users in a public place like a
mall or a sporting event may form an ad hoc network and wish to
share data in a peer-to-peer fashion. A request for download made
to a particular device in the collection should either be serviced by
that device, or rerouted to the device that has the content. Alterna-
tively, the environment itself may provide a collection of devices
and information can be downloaded from or even uploaded to the
resource-rich infrastructure. In this context, other challenges such
as peer discovery, group membership, and data location arise. Nu-
merous current research efforts are addressing these challenges [15,
21, 17], therefore we do not address them here.

The main goal of our work is to maintain availability of data in
a power-constrained environment. Regardless of whether the user
or the outside world is requesting data, we want to increase the
probability that the requested content is accessible. To meet this
goal, we monitor the power supply available across the collection
of devices, and migrate data from those devices with a low power
supply to those devices where the data will be most useful.

3.2 Implementing Data Management

To implement data management, each device in the collection
must run a data management component that performs migration.
The component behaves according to the following algorithm:

poll the operating systemfor the remaining energy |evel
if the level is below a threshold
mgrate subset of items on this device to 1 or nore
target devices in the collection
repeat



This algorithm is quite general and leaves a number of questions
unanswered. The first question is how we determine the threshold
for migration. The threshold is determined by taking into account
the remaining energy on the device, the amount of content to be
migrated (e.g., all content in a specified directory), the network
throughput of the device, and the power consumption character-
istics of the device. We assume that the power consumption and
network characteristics can be configured, or can be dynamically
determined by observing system behavior. When the amount of
energy remaining is equal to the amount of energy it will take to
migrate all of the required content, migration is initiated.

Another question is what happens if a user has picked up a par-
ticular device and taken it out of range when migration is initiated.
In this case, a potential target is unavailable. As long as one live
device is within range, migration can occur. However, if no devices
are within range, all data on the dying device becomes lost. A po-
tential solution to this problem might be to incrementally migrate
content throughout the life of the device. Another option might
be to monitor the wireless range of the collection of devices and
perform migration when a device starts to go out of range. Both
solutions are likely to incur some additional overhead in messaging
between the devices in the collection. We leave further exploration
of this problem as future work.

The next question addresses the strategy for choosing which data
should be migrated from a dying device. Migrating too little con-
tent may not be helpful while migrating too much content is waste-
ful of the resources required to transmit content. Because the an-
swer to this question is not straightforward, we investigate three
strategies for choosing which data to migrate:

Migrate All (MA) - In a migrate all strategy, all data is migrated
from the device losing power. While it may not be practical to mi-
grate everything on a particular device, this strategy can be imple-
mented by migrating all data that is located in a specified directory.
Migrate Most Recently Used (MRU) - In a most recently used
strategy, all data that has been accessed by the user recently will
be migrated. This strategy assumes that a user is likely to access
some specific subset of the available content at a given time. For
example, a user might be accessing all documents related to one
specific project.

Access Optimized (AO) - In an access optimized scheme, we as-
sume that we have some knowledge of which data the user is likely
to access. Either the user can specify a list of content that is likely
to be accessed, or we can implement some form of user profiling.

The final question addresses the strategy for choosing the desti-
nation device(s). We can imagine a number of very simple schemes
such as round-robin or simply choosing the device with the largest
remaining power supply. However, such schemes may be ineffec-
tive, or wasteful. Using a round-robin scheme, content may be
migrated from a dying device to another dying device. In this case,
the content will only have to be migrated again, likely before it is
even used. Choosing the device with the largest remaining power
supply may also be ineffective if the target device has very high
energy usage characteristics. Additionally, considerations such as
available storage space or bandwidth of the target device are also
likely to have an effect on performance.

In this work, we evaluate a Power Aware (PA) scheme for
choosing the destination device. The amount of content migrated
to a particular device is based on the remaining lifetime of that de-
vice with respect to the lifetimes of the other devices. We poll each
live device d in the collection for the amount of time it can continue
work before it reaches its threshold (rl4). For each device d, the
number of items migrated to d with respect to the total number of
items (ni) is (rlq * m‘)/Zf\’:1 rl;. Similarly, we could consider

the total size of the items instead of the number of items. How-
ever, for the purposes of our experiments, we assume that all files
are roughly the same size. This formula ensures that the amount of
content migrated to a given device is proportional to the remaining
lifetime of the device with respect to the remaining lifetimes of the
other devices in the collection. The goal of this scheme is to ensure
that content is available on devices that are likely to be alive when
the user tries to use them.

We could also imagine even more advanced schemes such as
predicting the remaining energy supply after migration occurs, or
predicting the device where the user is most likely to access the spe-
cific content. In the first case, implementing such a scheme would
only be necessary if the ratio of energy consumed to remaining en-
ergy supply varied greatly across the collection of devices. The
second option would avoid the case of migrating content to a de-
vice, and then having to fetch it, on-demand, from another device
before it can be used. However, to implement such a scheme, we
need to either explore user profiling techniques, or require the user
to specify where content is likely to accessed. We leave this ques-
tion as future work.

4. EVALUATION

In this section, we evaluate the data management schemes intro-
duced in Section 3 using simulation. We first discuss the use model
we assume. Then, we outline the metrics we evaluate and the setup
of our simulation. Finally, we present our results.

4.1 Simulation Overview

In this paper, we evaluate data management from the user per-
spective. In this section, we detail the set of assumptions we make
about user behavior.

First, we assume that a typical user carries four devices: one
large device such as a laptop; two medium sized devices such as a
PDA and a cell phone; and one small device such as a digital watch.
Choosing a different set of devices would have limited effect on the
results of our simulations since each type of device we model has
roughly the same lifetime given the ratio of full energy to energy
consumed when active. Further, we assume all devices have sim-
ilar functionality and can be easily interchanged for the tasks we
evaluate.

Next, we assume that a user uses one device at a time, and uses
that device until the battery has been exhausted. To clarify, we
revisit our example from Section 2. Imagine a user on an airplane.
She picks up her laptop and starts to modify a document. When the
laptop runs out of battery, she picks up her PDA and continues to
modify the document using the more limited interface. Eventually,
the PDA runs out of battery and she switches to her cell phone.
Finally, when her cell phone runs out of battery, she resorts to her
digital watch where she can dictate text using speech recognition.

Finally, we assume that one of the devices is constantly in use,
and the remaining devices are idle (or have run out of power). In
practice, an intelligent power saving scheme that puts all devices
into sleep mode when no device is used is likely to be employed.
We assume such a scheme is used, therefore we do not simulate
intermittent periods when all devices are idle. As described in Sec-
tion 4.5 we could employ additional power saving techniques to
reduce power consumption of the idle devices when one device is
in use. However, we leave this question as future work. For the pur-
poses of this work, we assume that all unused devices must be on
and idle such that any content not available on the device currently
in use can be fetched on-demand. That is to say, if a user wants to
listen to an MP3 stored on her PDA while she is currently using her
laptop, the file will be fetched, on-demand, from the PDA.



In our simulations, we model user behavior by creating a trace of
items that will be accessed. Iterating through the set of devices, we
model a user picking up a device and accessing the next piece of
content in the trace for a specified period of time. The trace of items
is finite. If the current piece of content is not available on the cur-
rent device and cannot be fetched from another device (i.e., the only
device storing the content has run out of battery power), we move
to the next piece of content specified in the trace. When the cur-
rent device reaches its power threshold, migration is initiated. As
described in Section 3, all remaining, reachable devices are polled,
and content is migrated to the most appropriate device(s).

4.2 Metrics

Our evaluation looks at three main metrics:
Time Devices Remain Usable - The primary metric we are inter-
ested in is the total time that a user can work. If the user is interested
in accessing data from a device that has gone dead, even if another
device remains available, the user cannot make progress. By mi-
grating relevant data to devices that are still available, we hope to
increase the total time the set of devices remains usable.
Data Misses - A secondary metric is the number of misses the user
experiences. A miss is characterized by the user picking up a de-
vice and attempting to access a piece of data that has been migrated
to another device, or was not migrated from a device before it died.
Misses are important because they indicate that the data migration
strategy has failed to migrate the data to the appropriate device.
Some misses can be overcome by migrating data from another de-
vice on-demand. However, if we fail to migrate data from a device
that has died, the user cannot complete the current task and will
have to attempt a new task.
Wasted Migrations - The third metric is the amount of power that
is wasted by migrating data that is never accessed on the new de-
vice. Migrating data requires additional power that would not oth-
erwise be consumed if a user were simply working on the device.
Therefore, wasting power reduces the total amount of time a user
can work on a particular device.

4.3 Setup

For our simulations, we modeled four devices; a large device
such as a laptop computer, two medium devices such as a PDA
and a cell phone (with the same characteristics), and a small device
such as a watch. Our small device characteristics (see Table 1) are
loosely based on measurements reported by Hill et al. [7]. While
we are not aware of a small device on the market that achieves the
functionality we intend, we believe that such a device will exist in
the future.

The large and medium device characteristics we use are taken
from measurements reported by Farkas et al. [2]. They measured
power consumption of the IBM ThinkPad 560x running at 233MHz
using 64Mbytes of memory and the Itsy Pocket Computer with
a SA-1100 processor running at 132.7 MHz using 64Mbytes of
DRAM and 32 Mbytes of flash memory. We use the idle, busy
wait, and busy wait with LCD-enabled benchmarks. While differ-
ent workloads may consume different amounts of energy, differ-
ences are often slight and these measurements are reasonable for
the granularity of our experiments.

Because Farkas et al. and Hill et al. do not measure the power
consumption of a network interface, we use the measurements
taken by Feeney and Nilsson [3]. They measure the consumption
of a 2.4GHz DSSS Lucent IEEE 802.11 WaveLAN PC Silver card
(11Mbps) running on an IBM ThinkPad 560. To obtain the device
characteristics shown in Table 1, we have added the measurements
reported by Feeney and Nilsson (idle, receiving, and transmitting)

to the measurements reported by Farkas et al. and Hill et al. This
provides us with a reasonable model for our simulation. Finally,
the full energy supply for the medium device is based on the bat-
tery type specified by Farkas et al. High-quality AAA batteries
have a capacity of 700 mAH. The large device supply is taken from
numbers reported by Flinn and Satyanarayanan [4].

A device can be in one of six states:

Idle- In the idle state, all components of the device are in idle mode
including the display and network card.

Active - In the active state, the processor and display are busy, and
the network card is idle. This state models the user accessing con-
tent on the device without having any network interaction.
Inactive Receiving (1/R) - In the inactive receiving state, the pro-
cessor is busy, the display is idle, and the network card is in re-
ceiving mode. This state models the device receiving the content
migrated from another device. However, the receiving device is not
being used by the user.

Active Receiving (A/R) - In the active receiving state, the proces-
sor and display are busy, and the network card is in receiving mode.
This state models the device receiving the content migrated from
another device while the user is accessing content on the receiving
device.

Inactive Transmitting (I/T) - In the inactive transmitting mode,
the processor is busy, the display is idle, and the network card is
in transmitting mode. This state models migrating content from
a device while the user is not accessing content on the particular
device.

Active Transmitting (A/T) - In the active transmitting state, the
processor and display are both busy, and the network card is in
transmitting mode. This state models migrating content from a de-
vice that the user is currently using to access content.

A device transitions into an active state if the user attempts to
access content on the device. A device transitions into a receiving
state if content is migrated to the device, or if the device fetches
content from another device on-demand. Finally, a device transi-
tions into a transmitting state if the device is migrating content to
another device, or is responding to an on-demand fetch.

We assume a fixed amount of storage is initially used on each
device. For the large device, we assume 3.5Mbytes, for the
medium devices, 2.0Mbytes, and for the small device, we assume
256Kbytes. Experience using other values for the initial storage
used shows that varying this parameter does not affect the results.
Moreover, we do not place any restrictions on the maximum stor-
age available on each device. Instead, we compare multiple migra-
tion schemes and evaluate the wastefulness of each with respect to
storage used across the collection of devices.

We vary the following characteristics:

Number of items stored - While the amount of storage used re-
mains stable, we vary the number of items initially stored on each
device such that the size of each item varies. We evaluate two
schemes: (1) FEW where the large, first medium, second medium
and small devices store 12, 10, 8, and 2 items respectively and (2)
MANY where the large, first medium, second medium, and small
devices store 24, 20, 16, and 4 items respectively. A user who
stored many papers or presentations on her devices might reflect
the FEW model whereas a user who stored a cache of email mes-
sages or web pages might reflect the MANY model.

Time for each access - We evaluate two patterns for the amount
of time each piece of content is accessed. In the SHORT pattern,
each piece of data is accessed from 0-50 minutes. A user who
is listening to music files, or browsing through cached web pages
might follow the SHORT access pattern. In the LONG pattern,
each piece of data is accessed from 50 minutes to 2 hours. A user



Size Full Energy Idle (W) Active (W) I/R (W) A/R (W) T (W) AIT (W)
Supply (9)

Small 2000 .01 .28 .32 .35 A4 5

Medium 7560 86744 1.186 1.3126 1.3476 1.75815 1.79315

Large 90000 3.93944 13.839 9.2006 14.0006 9.64615 14.44615

Table 1: Power consumption characteristics of devices smulated.

who is working on a paper or presentation would likely follow the
L ONG access pattern.

Trace distribution - We compare two distributions for generating
the trace of content a user wishes to access. The first distribution is
Zipf [23] which we feel is reasonable for many applications. Zipf
models the case when a user primarily accesses a small subset of the
entire available content base. We also compare the Zipf distribution
against a uniform distribution.

Throughput for each device - We assume that each device has an
11Mbps wireless card. However, in practice, wireless throughput
tends to be much less than 11Mbps. Thus, we examine various
values for the throughput achieved.

Migration scheme employed - We compare six migration
schemes. In the first scheme, NONE, no migration is employed.
In the second scheme, power aware migrate all (PAMA), we use
a power aware scheme for choosing the destination device, and we
migrate all data from the current device. In the third scheme, power
aware most recently used (PAM RU), we use a power aware scheme
for choosing the destination device and we use a most recently used
scheme for determining which data to migrate. In the most recently
used strategy, we do not assume any history is kept from session to
session and all data migrated is that which has been accessed since
the simulation began. In the fourth scheme, power aware access
optimized (PAAO), we look ahead in the trace of items to model
user preference. In essence, we assume that we have perfect knowl-
edge of the documents the user will access and migrate only those
items that appear in the remainder of the trace. In the fifth scheme,
ideal access optimized (1AO), we assume that all data is already
in its ideal location such that no migration is necessary and a user
can always continue working. In the final scheme, ideal power and
access optimized (IPAO), we make the same assumptions as in the
IAO scheme. However, we further assume that any device not in
use can be safely turned off. Thus, this scheme wastes no power in
idle mode.

4.4 Results

In Figure 3, we vary the migration scheme, number of items
stored, and length of time for each access for the Zipf trace distribu-
tion. The results presented illustrate the amount of time that a user
successfully accesses some piece of content (i.e., gets some work
done). Our first observation is that intelligent migration schemes
substantially increase the time a user can access information. In
the LONG/FEW case, the PAMA scheme increases the duration by
more than 2 times over NONE. In fact, PAMA is almost as efficient
as PAAO, the user preference scheme.

Our second observation is that our migration schemes approach,
and in some cases exceed the IAO scheme. IAO measures the
amount of time a user can complete work if she uses each device,
one at a time, until all power is exhausted on that particular device.
The remaining devices are on and idle during the entire experi-
ment. We were initially surprised by the result that our migration
schemes could perform better than 1AO. However, closer inspec-
tion of the behavior of the system led us to the conclusion that the
reason we perform better than IAO is because of the power con-
sumption characteristics of the small device. The small device con-

sumes less power, and hence has a longer overall lifetime than the
other devices. Thus, in our schemes we waste power migrating, and
exhaust the power on the large and medium devices sooner than in
the IAO case. The result is that we end up using the small device
for a longer period of time and can take advantage of the fact that
it consumes only a small amount of power while active. In the IAO
case, the other devices can be used for a longer period of time, dur-
ing which the small device’s lifetime is reduced by consuming idle
power. The conclusion we can draw from this observation is that
the order the devices are used in has an effect on the overall life-
time of the collection when the ratio of full energy to active power
consumption is high. In the future, we plan to explore the behav-
ior of a scheme where external users request download of content
and content is retrieved from the device where the content is stored.
This will give us a better understanding of the behavior of migra-
tion when devices are accessed in random order.
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Figure 3: Total time devicesremain usable for Zipf data access
pattern.

Our third observation is that behavior is reasonably consistent
across access patterns indicating that migration would be useful for
a variety of applications. One thing we do notice is that PAMRU
performs worse when the time for access is LONG. This can be
explained by the fact that LONG accesses mean that fewer items
are ultimately accessed. The result of this is that a smaller history
is built and less information is available about most recently used
items. We have performed some initial experiments to determine
the usefulness of keeping a longer history, but have observed in-
consistent results. Essentially, the shorter the history, the more un-
predictable the behavior. The longer the history, the more PAMRU
models the PAMA scheme.

Our final observation is that our strategies fail to approach IPAO.
This is because the power conservation of our devices during idle
time is quite high. In order to compete with an IPAO scheme, we
need to employ intelligent power saving techniques such as turning
off the network card or powering down unused hardware on the idle
devices. Section 4.5 provides a brief discussion of the challenges
of integrating these strategies. We leave further details as future
work.

In Figure 4, we evaluate the same parameters as in Figure 3, but
for a uniform trace distribution. Much of the behavior is similar to
that of Figure 3 indicating that our schemes are reasonably effective



for multiple trace distributions. However, we do notice that, for the
uniform distribution, NONE performs well and even outperforms
our migration schemes for the SHORT access pattern. The reason
we see such an improvement in NONE is because, in a uniform
distribution, requested content is more likely to be stored on, and
fetched on-demand from, all of the devices. In the event of a failure
of a particular device, the likelihood that the user can find an alter-
nate piece of content is high. In the SHORT/MANY case, NONE
outperforms migration because no energy is ever wasted transfer-
ring content between devices. From these observations, we can
conclude that migration is unlikely to be effective for applications
in which the user can make use of virtually any piece of content
stored on any device. However, this is unlikely to be the case for
most applications.
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Figure 4: Total time devices remain usable for uniform data
access pattern.

In Table 2, we take a closer look at the number of items that
are migrated and never accessed at the new device (Wasted Migra-
tions) and the number of times a piece of content must be fetched
on-demand (Fetches) or cannot be accessed because it was not mi-
grated from a device that died (Total Misses). We do not include
the ideal schemes, or NONE because no migrations occur in either
of the three schemes. The results presented are for the Zipf trace
distribution, but the results for the uniform distribution were simi-
lar.

Our first observation is that PAMA wastes quite a lot of energy in
all four access patterns. This is not surprising since PAMA essen-
tially implements a fully replicated file system across all devices in
a collection. In some cases, this may be an acceptable solution. In
fact, we see that full replication does not have a substantial impact
on the overall availability of the collection in the SHORT cases.
But, full replication not only impacts the energy spent transferring
content, it also impacts the storage space used on the collection
of devices. Replicating all data onto a watch may not be feasible.
Therefore, the tradeoff is to use a scheme, such as PAMRU, that in-
curs the penalty of increased Total Misses but reduces migrations.
For some applications, the percentage of Total Misses may be un-
acceptable. However, for many applications, a user can browse the
content the is available and take advantage of a wider range of files.
It is noteworthy to point out that the trace of requests we generate
is finite, but slightly exceeds the total amount of time the collec-
tion of devices will remain available. There are two impacts of
this. First, this is why the PAAO scheme experiences a non-zero
number of Wasted migrations. Also, since we assume that a user’s
list of tasks exceeds the amount of time she will actually have to
complete them, even if a Total Miss is experienced, the user may
be able to continue working. Making the list of tasks longer can
increase the time work can be done in both the NONE and PAMRU
schemes.

Data Access Scheme Throughput Duration
Pattern (Kbps) (minutes)
SHORT/ PAMA 11,000 256.68
FEW 500 252.83
250 248.78
100 236.67
56 220.9
PAMRU 11,000 256.82
500 255.83
250 254.8
100 251.68
56 247.63
LONG/ PAMA 11,000 256.68
MANY 500 253.03
250 249.18
100 237.7
56 221.23
PAMRU 11,000 170.05
500 170.05
250 170.05
100 170.05
56 170.05

Table 3: Total time devicesremain usable for varying through-
put rates.

In the results we have presented thus far, PAMA has performed
very well in terms of usable time despite the overhead incurred by
migrating so much content. A primary reason for this result is that
the throughput of the devices is quite high at 11Mbps. In a wireless
environment, using a CPU constrained device, 11Mbps through-
put is likely not achievable. Collision in the wireless medium as
well as the constrained processing power of devices drastically re-
duces throughput. In Table 3 we compare usable time for PAMA
and PAMRU with reduced throughput. As we expected, the usable
time for the PAMA scheme decreases with decreasing throughput
while the PAMRU scheme remains relatively stable. This is sim-
ply because a slower connection will result in longer transfer times,
and more power consumed during transfer. What we do notice is
that from 11Mbps to 500Kbps, there is little difference in the usable
time. Further, below 500Kbps, there is some drop, but the drop is
not substantial. This is encouraging since it indicates that the over-
head of migration is unlikely to be impacted by the throughput of
the device. Though, the final observation we can make is that the
transfer overhead will clearly increase if data objects are larger.

4.5 Discussion

The results that we have presented in this section are all quite
promising. Migration performs well using a variety of devices
working under a variety of workloads. However, there are a few
exceptional cases where migration is not as beneficial. First, if the
idle power consumption of the devices used is not substantially less
than the power consumption in active mode, all devices are likely
to run out of power at the same time. To improve this situation, we
could integrate power saving strategies such as turning off the net-
work card, or putting the entire device to sleep during idle time. To
integrate such as scheme, we could simply periodically wake the
sleeping device and poll the remaining devices to determine if any
content must be migrated. Since we already employ batched mi-
gration, changes to our algorithm would be minimal. Primarily, we
would need to be able to initiate migration before the threshold is
reached if another device is alive and likely to be asleep again when
the threshold is reached. Alternatively, we could rely on the user
to wake sleeping devices if notified that migration needs to occur.
However, this would be a less preferable option. The other chal-
lenge is determining the power available on the remaining devices



Data Access Scheme Total Wasted Access Fetches Total
Pattern Migrations Migrations Attempts Misses
SHORT/FEW PAMA 32 24 14 2 0
PAMRU 5 1 23 2 11
PAAO 15 7 14 2 0
SHORT/MANY PAMA 63 55 14 3 0
PAMRU 6 3 32 2 19
PAAO 22 14 14 3 0
LONG/FEW PAMA 32 29 6 2 0
PAMRU 2 0 13 1 9
PAAO 7 4 6 2 0
LONG/MANY PAMA 64 60 6 4 0
PAMRU 4 2 13 3 8
PAAO 11 7 6 4 0

Table 2: Missesand wasted migrationsfor Zipf access pattern.

for the power-aware scheme. To solve this problem, we could sim-
ply cache the power available on each device since it will change
very little while the device is in sleep mode.

In certain cases our algorithm may choose to migrate large
amounts of data (e.g., an MPEG movie) that the user is not inter-
ested in accessing, or may fail to migrate data on which other data
may be dependent. We argue that these exceptional cases could be
avoided by allowing the user to tag data or specify characteristics
of data that should not be migrated or should be migrated together.

5. CONCLUSION

In this work, we have investigated the benefit of using power-
aware strategies for managing data across a collection of devices.
Our results show that by monitoring available lifetime and migrat-
ing critical data, we can increase the usability of a collection of de-
vices by over 2 times. Additionally, we observe that the overhead
of such a scheme is relatively low compared to the benefit. Our
strategy remains hidden from the user while transparently ensuring
that a user can continue work even if a device runs out of battery.
As pervasive devices become increasingly popular, developing and
deploying these kinds of techniques will help to make devices both
more powerful and more usable.
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